Drug ranking using machine learning systematically predicts the efficacy of anti-cancer drugs
Artificial intelligence and machine learning promise to transform cancer therapies by accurately predicting the most appropriate drugs to treat individual patients. Here, the authors present an approach which uses omics data to produce ordered lists of drugs based on their effectiveness in decreasin...
Guardado en:
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dd9e23dc4fd245f6935c304010512356 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:dd9e23dc4fd245f6935c304010512356 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:dd9e23dc4fd245f6935c3040105123562021-12-02T14:02:51ZDrug ranking using machine learning systematically predicts the efficacy of anti-cancer drugs10.1038/s41467-021-22170-82041-1723https://doaj.org/article/dd9e23dc4fd245f6935c3040105123562021-03-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-22170-8https://doaj.org/toc/2041-1723Artificial intelligence and machine learning promise to transform cancer therapies by accurately predicting the most appropriate drugs to treat individual patients. Here, the authors present an approach which uses omics data to produce ordered lists of drugs based on their effectiveness in decreasing cancer cell proliferation.Henry GerdesPedro CasadoArran DokalMaruan HijaziNosheen AkhtarRuth OsuntolaVinothini RajeeveJude FitzgibbonJon TraversDavid BrittonShirin KhorsandiPedro R. CutillasNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-15 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Henry Gerdes Pedro Casado Arran Dokal Maruan Hijazi Nosheen Akhtar Ruth Osuntola Vinothini Rajeeve Jude Fitzgibbon Jon Travers David Britton Shirin Khorsandi Pedro R. Cutillas Drug ranking using machine learning systematically predicts the efficacy of anti-cancer drugs |
description |
Artificial intelligence and machine learning promise to transform cancer therapies by accurately predicting the most appropriate drugs to treat individual patients. Here, the authors present an approach which uses omics data to produce ordered lists of drugs based on their effectiveness in decreasing cancer cell proliferation. |
format |
article |
author |
Henry Gerdes Pedro Casado Arran Dokal Maruan Hijazi Nosheen Akhtar Ruth Osuntola Vinothini Rajeeve Jude Fitzgibbon Jon Travers David Britton Shirin Khorsandi Pedro R. Cutillas |
author_facet |
Henry Gerdes Pedro Casado Arran Dokal Maruan Hijazi Nosheen Akhtar Ruth Osuntola Vinothini Rajeeve Jude Fitzgibbon Jon Travers David Britton Shirin Khorsandi Pedro R. Cutillas |
author_sort |
Henry Gerdes |
title |
Drug ranking using machine learning systematically predicts the efficacy of anti-cancer drugs |
title_short |
Drug ranking using machine learning systematically predicts the efficacy of anti-cancer drugs |
title_full |
Drug ranking using machine learning systematically predicts the efficacy of anti-cancer drugs |
title_fullStr |
Drug ranking using machine learning systematically predicts the efficacy of anti-cancer drugs |
title_full_unstemmed |
Drug ranking using machine learning systematically predicts the efficacy of anti-cancer drugs |
title_sort |
drug ranking using machine learning systematically predicts the efficacy of anti-cancer drugs |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/dd9e23dc4fd245f6935c304010512356 |
work_keys_str_mv |
AT henrygerdes drugrankingusingmachinelearningsystematicallypredictstheefficacyofanticancerdrugs AT pedrocasado drugrankingusingmachinelearningsystematicallypredictstheefficacyofanticancerdrugs AT arrandokal drugrankingusingmachinelearningsystematicallypredictstheefficacyofanticancerdrugs AT maruanhijazi drugrankingusingmachinelearningsystematicallypredictstheefficacyofanticancerdrugs AT nosheenakhtar drugrankingusingmachinelearningsystematicallypredictstheefficacyofanticancerdrugs AT ruthosuntola drugrankingusingmachinelearningsystematicallypredictstheefficacyofanticancerdrugs AT vinothinirajeeve drugrankingusingmachinelearningsystematicallypredictstheefficacyofanticancerdrugs AT judefitzgibbon drugrankingusingmachinelearningsystematicallypredictstheefficacyofanticancerdrugs AT jontravers drugrankingusingmachinelearningsystematicallypredictstheefficacyofanticancerdrugs AT davidbritton drugrankingusingmachinelearningsystematicallypredictstheefficacyofanticancerdrugs AT shirinkhorsandi drugrankingusingmachinelearningsystematicallypredictstheefficacyofanticancerdrugs AT pedrorcutillas drugrankingusingmachinelearningsystematicallypredictstheefficacyofanticancerdrugs |
_version_ |
1718392113438130176 |