Drug ranking using machine learning systematically predicts the efficacy of anti-cancer drugs
Artificial intelligence and machine learning promise to transform cancer therapies by accurately predicting the most appropriate drugs to treat individual patients. Here, the authors present an approach which uses omics data to produce ordered lists of drugs based on their effectiveness in decreasin...
Guardado en:
Autores principales: | Henry Gerdes, Pedro Casado, Arran Dokal, Maruan Hijazi, Nosheen Akhtar, Ruth Osuntola, Vinothini Rajeeve, Jude Fitzgibbon, Jon Travers, David Britton, Shirin Khorsandi, Pedro R. Cutillas |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dd9e23dc4fd245f6935c304010512356 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
NeuRank: learning to rank with neural networks for drug–target interaction prediction
por: Xiujin Wu, et al.
Publicado: (2021) -
Learning from low-rank multimodal representations for predicting disease-drug associations
por: Pengwei Hu, et al.
Publicado: (2021) -
Transport rankings of non-steroidal antiinflammatory drugs across blood-brain barrier in vitro models.
por: Iveta Novakova, et al.
Publicado: (2014) -
Author Correction: The development of a scoring and ranking strategy for a patient-tailored adverse drug reaction prediction in polypharmacy
por: Andrei Valeanu, et al.
Publicado: (2021) -
Magnetic nanoparticles for gene and drug delivery
por: Stuart C McBain, et al.
Publicado: (2008)