Deep Learning-Based Instance Segmentation for Indoor Fire Load Recognition
Accurate fire load (combustible objects) information is crucial for safety design and resilience assessment of buildings. Traditional fire load acquisition methods, such as fire load survey, which are time-consuming, tedious, and error-prone, failed to adapt to dynamic changed indoor scenes. As a st...
Guardado en:
Autores principales: | Yu-Cheng Zhou, Zhen-Zhong Hu, Ke-Xiao Yan, Jia-Rui Lin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dd9e5e1f07ec4de3900d6d304d3d0d35 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Thin-walled compressed steel constructions under fire load
por: Gravit Marina, et al.
Publicado: (2021) -
Analysis of the fire resistance of normal wooden doors exposed to fire conditions
por: Panno,Carina, et al.
Publicado: (2020) -
Experimental analysis of fire resistance of mortar coatings on structural masonry walls
por: Prager,Gustavo, et al.
Publicado: (2020) -
Substantiation of application of the strategic planning methods In order to improve efficiency of the automated systems of fire and explosion protection at the fuel and energy complex facilities In the special conditions
por: Samarin Ilya, et al.
Publicado: (2021) -
Synergistic Attention for Ship Instance Segmentation in SAR Images
por: Danpei Zhao, et al.
Publicado: (2021)