Deep Learning-Based Instance Segmentation for Indoor Fire Load Recognition
Accurate fire load (combustible objects) information is crucial for safety design and resilience assessment of buildings. Traditional fire load acquisition methods, such as fire load survey, which are time-consuming, tedious, and error-prone, failed to adapt to dynamic changed indoor scenes. As a st...
Enregistré dans:
Auteurs principaux: | Yu-Cheng Zhou, Zhen-Zhong Hu, Ke-Xiao Yan, Jia-Rui Lin |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/dd9e5e1f07ec4de3900d6d304d3d0d35 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Thin-walled compressed steel constructions under fire load
par: Gravit Marina, et autres
Publié: (2021) -
Analysis of the fire resistance of normal wooden doors exposed to fire conditions
par: Panno,Carina, et autres
Publié: (2020) -
Experimental analysis of fire resistance of mortar coatings on structural masonry walls
par: Prager,Gustavo, et autres
Publié: (2020) -
Substantiation of application of the strategic planning methods In order to improve efficiency of the automated systems of fire and explosion protection at the fuel and energy complex facilities In the special conditions
par: Samarin Ilya, et autres
Publié: (2021) -
Synergistic Attention for Ship Instance Segmentation in SAR Images
par: Danpei Zhao, et autres
Publié: (2021)