Laser-driven shock compression of “synthetic planetary mixtures” of water, ethanol, and ammonia

Abstract Water, methane, and ammonia are commonly considered to be the key components of the interiors of Uranus and Neptune. Modelling the planets’ internal structure, evolution, and dynamo heavily relies on the properties of the complex mixtures with uncertain exact composition in their deep inter...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: M. Guarguaglini, J.-A. Hernandez, T. Okuchi, P. Barroso, A. Benuzzi-Mounaix, M. Bethkenhagen, R. Bolis, E. Brambrink, M. French, Y. Fujimoto, R. Kodama, M. Koenig, F. Lefevre, K. Miyanishi, N. Ozaki, R. Redmer, T. Sano, Y. Umeda, T. Vinci, A. Ravasio
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
R
Q
Acceso en línea:https://doaj.org/article/dda2e805f1f44050b8985eb50b54102b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:dda2e805f1f44050b8985eb50b54102b
record_format dspace
spelling oai:doaj.org-article:dda2e805f1f44050b8985eb50b54102b2021-12-02T15:07:54ZLaser-driven shock compression of “synthetic planetary mixtures” of water, ethanol, and ammonia10.1038/s41598-019-46561-62045-2322https://doaj.org/article/dda2e805f1f44050b8985eb50b54102b2019-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-019-46561-6https://doaj.org/toc/2045-2322Abstract Water, methane, and ammonia are commonly considered to be the key components of the interiors of Uranus and Neptune. Modelling the planets’ internal structure, evolution, and dynamo heavily relies on the properties of the complex mixtures with uncertain exact composition in their deep interiors. Therefore, characterising icy mixtures with varying composition at planetary conditions of several hundred gigapascal and a few thousand Kelvin is crucial to improve our understanding of the ice giants. In this work, pure water, a water-ethanol mixture, and a water-ethanol-ammonia “synthetic planetary mixture” (SPM) have been compressed through laser-driven decaying shocks along their principal Hugoniot curves up to 270, 280, and 260 GPa, respectively. Measured temperatures spanned from 4000 to 25000 K, just above the coldest predicted adiabatic Uranus and Neptune profiles (3000–4000 K) but more similar to those predicted by more recent models including a thermal boundary layer (7000–14000 K). The experiments were performed at the GEKKO XII and LULI2000 laser facilities using standard optical diagnostics (Doppler velocimetry and optical pyrometry) to measure the thermodynamic state and the shock-front reflectivity at two different wavelengths. The results show that water and the mixtures undergo a similar compression path under single shock loading in agreement with Density Functional Theory Molecular Dynamics (DFT-MD) calculations using the Linear Mixing Approximation (LMA). On the contrary, their shock-front reflectivities behave differently by what concerns both the onset pressures and the saturation values, with possible impact on planetary dynamos.M. GuarguagliniJ.-A. HernandezT. OkuchiP. BarrosoA. Benuzzi-MounaixM. BethkenhagenR. BolisE. BrambrinkM. FrenchY. FujimotoR. KodamaM. KoenigF. LefevreK. MiyanishiN. OzakiR. RedmerT. SanoY. UmedaT. VinciA. RavasioNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 9, Iss 1, Pp 1-9 (2019)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
M. Guarguaglini
J.-A. Hernandez
T. Okuchi
P. Barroso
A. Benuzzi-Mounaix
M. Bethkenhagen
R. Bolis
E. Brambrink
M. French
Y. Fujimoto
R. Kodama
M. Koenig
F. Lefevre
K. Miyanishi
N. Ozaki
R. Redmer
T. Sano
Y. Umeda
T. Vinci
A. Ravasio
Laser-driven shock compression of “synthetic planetary mixtures” of water, ethanol, and ammonia
description Abstract Water, methane, and ammonia are commonly considered to be the key components of the interiors of Uranus and Neptune. Modelling the planets’ internal structure, evolution, and dynamo heavily relies on the properties of the complex mixtures with uncertain exact composition in their deep interiors. Therefore, characterising icy mixtures with varying composition at planetary conditions of several hundred gigapascal and a few thousand Kelvin is crucial to improve our understanding of the ice giants. In this work, pure water, a water-ethanol mixture, and a water-ethanol-ammonia “synthetic planetary mixture” (SPM) have been compressed through laser-driven decaying shocks along their principal Hugoniot curves up to 270, 280, and 260 GPa, respectively. Measured temperatures spanned from 4000 to 25000 K, just above the coldest predicted adiabatic Uranus and Neptune profiles (3000–4000 K) but more similar to those predicted by more recent models including a thermal boundary layer (7000–14000 K). The experiments were performed at the GEKKO XII and LULI2000 laser facilities using standard optical diagnostics (Doppler velocimetry and optical pyrometry) to measure the thermodynamic state and the shock-front reflectivity at two different wavelengths. The results show that water and the mixtures undergo a similar compression path under single shock loading in agreement with Density Functional Theory Molecular Dynamics (DFT-MD) calculations using the Linear Mixing Approximation (LMA). On the contrary, their shock-front reflectivities behave differently by what concerns both the onset pressures and the saturation values, with possible impact on planetary dynamos.
format article
author M. Guarguaglini
J.-A. Hernandez
T. Okuchi
P. Barroso
A. Benuzzi-Mounaix
M. Bethkenhagen
R. Bolis
E. Brambrink
M. French
Y. Fujimoto
R. Kodama
M. Koenig
F. Lefevre
K. Miyanishi
N. Ozaki
R. Redmer
T. Sano
Y. Umeda
T. Vinci
A. Ravasio
author_facet M. Guarguaglini
J.-A. Hernandez
T. Okuchi
P. Barroso
A. Benuzzi-Mounaix
M. Bethkenhagen
R. Bolis
E. Brambrink
M. French
Y. Fujimoto
R. Kodama
M. Koenig
F. Lefevre
K. Miyanishi
N. Ozaki
R. Redmer
T. Sano
Y. Umeda
T. Vinci
A. Ravasio
author_sort M. Guarguaglini
title Laser-driven shock compression of “synthetic planetary mixtures” of water, ethanol, and ammonia
title_short Laser-driven shock compression of “synthetic planetary mixtures” of water, ethanol, and ammonia
title_full Laser-driven shock compression of “synthetic planetary mixtures” of water, ethanol, and ammonia
title_fullStr Laser-driven shock compression of “synthetic planetary mixtures” of water, ethanol, and ammonia
title_full_unstemmed Laser-driven shock compression of “synthetic planetary mixtures” of water, ethanol, and ammonia
title_sort laser-driven shock compression of “synthetic planetary mixtures” of water, ethanol, and ammonia
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/dda2e805f1f44050b8985eb50b54102b
work_keys_str_mv AT mguarguaglini laserdrivenshockcompressionofsyntheticplanetarymixturesofwaterethanolandammonia
AT jahernandez laserdrivenshockcompressionofsyntheticplanetarymixturesofwaterethanolandammonia
AT tokuchi laserdrivenshockcompressionofsyntheticplanetarymixturesofwaterethanolandammonia
AT pbarroso laserdrivenshockcompressionofsyntheticplanetarymixturesofwaterethanolandammonia
AT abenuzzimounaix laserdrivenshockcompressionofsyntheticplanetarymixturesofwaterethanolandammonia
AT mbethkenhagen laserdrivenshockcompressionofsyntheticplanetarymixturesofwaterethanolandammonia
AT rbolis laserdrivenshockcompressionofsyntheticplanetarymixturesofwaterethanolandammonia
AT ebrambrink laserdrivenshockcompressionofsyntheticplanetarymixturesofwaterethanolandammonia
AT mfrench laserdrivenshockcompressionofsyntheticplanetarymixturesofwaterethanolandammonia
AT yfujimoto laserdrivenshockcompressionofsyntheticplanetarymixturesofwaterethanolandammonia
AT rkodama laserdrivenshockcompressionofsyntheticplanetarymixturesofwaterethanolandammonia
AT mkoenig laserdrivenshockcompressionofsyntheticplanetarymixturesofwaterethanolandammonia
AT flefevre laserdrivenshockcompressionofsyntheticplanetarymixturesofwaterethanolandammonia
AT kmiyanishi laserdrivenshockcompressionofsyntheticplanetarymixturesofwaterethanolandammonia
AT nozaki laserdrivenshockcompressionofsyntheticplanetarymixturesofwaterethanolandammonia
AT rredmer laserdrivenshockcompressionofsyntheticplanetarymixturesofwaterethanolandammonia
AT tsano laserdrivenshockcompressionofsyntheticplanetarymixturesofwaterethanolandammonia
AT yumeda laserdrivenshockcompressionofsyntheticplanetarymixturesofwaterethanolandammonia
AT tvinci laserdrivenshockcompressionofsyntheticplanetarymixturesofwaterethanolandammonia
AT aravasio laserdrivenshockcompressionofsyntheticplanetarymixturesofwaterethanolandammonia
_version_ 1718388351989448704