Empirical mode decomposition of multiphase flows in porous media: characteristic scales and speed of convergence

Abstract We apply a proper orthogonal decomposition (POD) to data stemming from numerical simulations of a fingering instability in a multiphase flow passing through obstacles in a porous medium, to study water injection processes in the production of hydrocarbon reservoirs. We show that the time ev...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Nicolás Echebarrena, Pablo D. Mininni, Gustavo A. Moreno
Formato: article
Lenguaje:EN
Publicado: KeAi Communications Co., Ltd. 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/ddaa194582d744ba996a1ff04cf32932
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ddaa194582d744ba996a1ff04cf32932
record_format dspace
spelling oai:doaj.org-article:ddaa194582d744ba996a1ff04cf329322021-12-02T11:24:56ZEmpirical mode decomposition of multiphase flows in porous media: characteristic scales and speed of convergence10.1007/s12182-019-00382-41672-51071995-8226https://doaj.org/article/ddaa194582d744ba996a1ff04cf329322019-10-01T00:00:00Zhttp://link.springer.com/article/10.1007/s12182-019-00382-4https://doaj.org/toc/1672-5107https://doaj.org/toc/1995-8226Abstract We apply a proper orthogonal decomposition (POD) to data stemming from numerical simulations of a fingering instability in a multiphase flow passing through obstacles in a porous medium, to study water injection processes in the production of hydrocarbon reservoirs. We show that the time evolution of a properly defined flow correlation length can be used to identify the onset of the fingering instability. Computation of characteristic lengths for each of the modes resulting from the POD provides further information on the dynamics of the system. Finally, using numerical simulations with different viscosity ratios, we show that the convergence of the POD depends non-trivially on whether the fingering instability develops or not. This result has implications on proposed methods to decrease the dimensionality of the problem by deriving reduced dynamical systems after truncating the system’s governing equations to a few POD modes.Nicolás EchebarrenaPablo D. MininniGustavo A. MorenoKeAi Communications Co., Ltd.articleTwo-phase flowEmpirical mode decompositionViscous fingeringPorous mediaScienceQPetrologyQE420-499ENPetroleum Science, Vol 17, Iss 1, Pp 153-167 (2019)
institution DOAJ
collection DOAJ
language EN
topic Two-phase flow
Empirical mode decomposition
Viscous fingering
Porous media
Science
Q
Petrology
QE420-499
spellingShingle Two-phase flow
Empirical mode decomposition
Viscous fingering
Porous media
Science
Q
Petrology
QE420-499
Nicolás Echebarrena
Pablo D. Mininni
Gustavo A. Moreno
Empirical mode decomposition of multiphase flows in porous media: characteristic scales and speed of convergence
description Abstract We apply a proper orthogonal decomposition (POD) to data stemming from numerical simulations of a fingering instability in a multiphase flow passing through obstacles in a porous medium, to study water injection processes in the production of hydrocarbon reservoirs. We show that the time evolution of a properly defined flow correlation length can be used to identify the onset of the fingering instability. Computation of characteristic lengths for each of the modes resulting from the POD provides further information on the dynamics of the system. Finally, using numerical simulations with different viscosity ratios, we show that the convergence of the POD depends non-trivially on whether the fingering instability develops or not. This result has implications on proposed methods to decrease the dimensionality of the problem by deriving reduced dynamical systems after truncating the system’s governing equations to a few POD modes.
format article
author Nicolás Echebarrena
Pablo D. Mininni
Gustavo A. Moreno
author_facet Nicolás Echebarrena
Pablo D. Mininni
Gustavo A. Moreno
author_sort Nicolás Echebarrena
title Empirical mode decomposition of multiphase flows in porous media: characteristic scales and speed of convergence
title_short Empirical mode decomposition of multiphase flows in porous media: characteristic scales and speed of convergence
title_full Empirical mode decomposition of multiphase flows in porous media: characteristic scales and speed of convergence
title_fullStr Empirical mode decomposition of multiphase flows in porous media: characteristic scales and speed of convergence
title_full_unstemmed Empirical mode decomposition of multiphase flows in porous media: characteristic scales and speed of convergence
title_sort empirical mode decomposition of multiphase flows in porous media: characteristic scales and speed of convergence
publisher KeAi Communications Co., Ltd.
publishDate 2019
url https://doaj.org/article/ddaa194582d744ba996a1ff04cf32932
work_keys_str_mv AT nicolasechebarrena empiricalmodedecompositionofmultiphaseflowsinporousmediacharacteristicscalesandspeedofconvergence
AT pablodmininni empiricalmodedecompositionofmultiphaseflowsinporousmediacharacteristicscalesandspeedofconvergence
AT gustavoamoreno empiricalmodedecompositionofmultiphaseflowsinporousmediacharacteristicscalesandspeedofconvergence
_version_ 1718395968502628352