Algebraic computational methods for solving three nonlinear vital models fractional in mathematical physics
This research paper uses a direct algebraic computational scheme to construct the Jacobi elliptic solutions based on the conformal fractional derivatives for nonlinear partial fractional differential equations (NPFDEs). Three vital models in mathematical physics [the space-time fractional coupled Hi...
Guardado en:
Autores principales: | Gepreel Khaled A., Mahdy Amr M. S. |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ddaa5011096945128998dc84c404c50f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Construction of abundant novel analytical solutions of the space–time fractional nonlinear generalized equal width model via Riemann–Liouville derivative with application of mathematical methods
por: Seadawy Aly R., et al.
Publicado: (2021) -
Solitonic, quasi-periodic, super nonlinear and chaotic behaviors of a dispersive extended nonlinear Schrödinger equation in an optical fiber
por: Faiqa Ali, et al.
Publicado: (2021) -
Series solution to fractional contact problem using Caputo’s derivative
por: Rafiq Muhammad, et al.
Publicado: (2021) -
An Identity Related to Derivations of Standard Operator Algebras and Semisimple H*-Algebra¹
por: Kosi-Ulbl,Irena, et al.
Publicado: (2010) -
Extracting novel categories of analytical wave solutions to a nonlinear Schrödinger equation of unstable type
por: Yan Cao, et al.
Publicado: (2021)