Parallelizations on products of spheres and octonionic geometry
A classical theoremof Kervaire states that products of spheres are parallelizable if and only if at least one of the factors has odd dimension. Two explicit parallelizations on Sm × S2h−1 seem to be quite natural, and have been previously studied by the first named author in [32]. The present paper...
Guardado en:
Autores principales: | Parton Maurizio, Piccinni Paolo |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ddca1e222d384027b5122b50db3c592c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Nearly Sasakian manifolds revisited
por: Cappelletti-Montano Beniamino, et al.
Publicado: (2019) -
Lagrangian geometry of the Gauss images of isoparametric hypersurfaces in spheres
por: Miyaoka Reiko, et al.
Publicado: (2019) -
A binary encoding of spinors and applications
por: Arizmendi Gerardo, et al.
Publicado: (2020) -
Pseudo-holomorphic curves: A very quick overview
por: Oliveira Gonçalo
Publicado: (2020) -
Ricci-flat and Einstein pseudoriemannian nilmanifolds
por: Conti Diego, et al.
Publicado: (2019)