Partial involvement of Nrf2 in skeletal muscle mitohormesis as an adaptive response to mitochondrial uncoupling
Abstract Mitochondrial dysfunction is usually associated with various metabolic disorders and ageing. However, salutary effects in response to mild mitochondrial perturbations have been reported in multiple organisms, whereas molecular regulators of cell-autonomous stress responses remain elusive. W...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ddd25ebf61ac4caa96259ace3a1b59f0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ddd25ebf61ac4caa96259ace3a1b59f0 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ddd25ebf61ac4caa96259ace3a1b59f02021-12-02T15:08:41ZPartial involvement of Nrf2 in skeletal muscle mitohormesis as an adaptive response to mitochondrial uncoupling10.1038/s41598-018-20901-42045-2322https://doaj.org/article/ddd25ebf61ac4caa96259ace3a1b59f02018-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-018-20901-4https://doaj.org/toc/2045-2322Abstract Mitochondrial dysfunction is usually associated with various metabolic disorders and ageing. However, salutary effects in response to mild mitochondrial perturbations have been reported in multiple organisms, whereas molecular regulators of cell-autonomous stress responses remain elusive. We addressed this question by asking whether the nuclear factor erythroid-derived-like 2 (Nrf2), a transcription factor and master regulator of cellular redox status is involved in adaptive physiological responses including muscle mitohormesis. Using a transgenic mouse model with skeletal muscle-specific mitochondrial uncoupling and oxidative phosphorylation (OXPHOS) inefficiency (UCP1-transgenic, TG) we show that additional genetic ablation of Nrf2 abolishes an adaptive muscle NAD(P)H quinone dehydrogenase 1 (NQO1) and catalase induction. Deficiency of Nrf2 also leads to decreased mitochondrial respiratory performance although muscle functional integrity, fiber-type profile and mitochondrial biogenesis were not significantly altered. Importantly, Nrf2 ablation did not abolish the induction of key genes and proteins of muscle integrated stress response including the serine, one-carbon cycle, and glycine synthesis (SOG) pathway in TG mice while further increasing glutathione peroxidase (GPX) activity linked to increased GPX1 protein levels. Conclusively, our results tune down the functions controlled by Nrf2 in muscle mitohormesis and oxidative stress defense during mitochondrial OXPHOS inefficiency.Verena ColemanPiangkwan Sa-NguanmooJeannette KoenigTim J. SchulzTilman GruneSusanne KlausAnna P. KippMario OstNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 8, Iss 1, Pp 1-12 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Verena Coleman Piangkwan Sa-Nguanmoo Jeannette Koenig Tim J. Schulz Tilman Grune Susanne Klaus Anna P. Kipp Mario Ost Partial involvement of Nrf2 in skeletal muscle mitohormesis as an adaptive response to mitochondrial uncoupling |
description |
Abstract Mitochondrial dysfunction is usually associated with various metabolic disorders and ageing. However, salutary effects in response to mild mitochondrial perturbations have been reported in multiple organisms, whereas molecular regulators of cell-autonomous stress responses remain elusive. We addressed this question by asking whether the nuclear factor erythroid-derived-like 2 (Nrf2), a transcription factor and master regulator of cellular redox status is involved in adaptive physiological responses including muscle mitohormesis. Using a transgenic mouse model with skeletal muscle-specific mitochondrial uncoupling and oxidative phosphorylation (OXPHOS) inefficiency (UCP1-transgenic, TG) we show that additional genetic ablation of Nrf2 abolishes an adaptive muscle NAD(P)H quinone dehydrogenase 1 (NQO1) and catalase induction. Deficiency of Nrf2 also leads to decreased mitochondrial respiratory performance although muscle functional integrity, fiber-type profile and mitochondrial biogenesis were not significantly altered. Importantly, Nrf2 ablation did not abolish the induction of key genes and proteins of muscle integrated stress response including the serine, one-carbon cycle, and glycine synthesis (SOG) pathway in TG mice while further increasing glutathione peroxidase (GPX) activity linked to increased GPX1 protein levels. Conclusively, our results tune down the functions controlled by Nrf2 in muscle mitohormesis and oxidative stress defense during mitochondrial OXPHOS inefficiency. |
format |
article |
author |
Verena Coleman Piangkwan Sa-Nguanmoo Jeannette Koenig Tim J. Schulz Tilman Grune Susanne Klaus Anna P. Kipp Mario Ost |
author_facet |
Verena Coleman Piangkwan Sa-Nguanmoo Jeannette Koenig Tim J. Schulz Tilman Grune Susanne Klaus Anna P. Kipp Mario Ost |
author_sort |
Verena Coleman |
title |
Partial involvement of Nrf2 in skeletal muscle mitohormesis as an adaptive response to mitochondrial uncoupling |
title_short |
Partial involvement of Nrf2 in skeletal muscle mitohormesis as an adaptive response to mitochondrial uncoupling |
title_full |
Partial involvement of Nrf2 in skeletal muscle mitohormesis as an adaptive response to mitochondrial uncoupling |
title_fullStr |
Partial involvement of Nrf2 in skeletal muscle mitohormesis as an adaptive response to mitochondrial uncoupling |
title_full_unstemmed |
Partial involvement of Nrf2 in skeletal muscle mitohormesis as an adaptive response to mitochondrial uncoupling |
title_sort |
partial involvement of nrf2 in skeletal muscle mitohormesis as an adaptive response to mitochondrial uncoupling |
publisher |
Nature Portfolio |
publishDate |
2018 |
url |
https://doaj.org/article/ddd25ebf61ac4caa96259ace3a1b59f0 |
work_keys_str_mv |
AT verenacoleman partialinvolvementofnrf2inskeletalmusclemitohormesisasanadaptiveresponsetomitochondrialuncoupling AT piangkwansanguanmoo partialinvolvementofnrf2inskeletalmusclemitohormesisasanadaptiveresponsetomitochondrialuncoupling AT jeannettekoenig partialinvolvementofnrf2inskeletalmusclemitohormesisasanadaptiveresponsetomitochondrialuncoupling AT timjschulz partialinvolvementofnrf2inskeletalmusclemitohormesisasanadaptiveresponsetomitochondrialuncoupling AT tilmangrune partialinvolvementofnrf2inskeletalmusclemitohormesisasanadaptiveresponsetomitochondrialuncoupling AT susanneklaus partialinvolvementofnrf2inskeletalmusclemitohormesisasanadaptiveresponsetomitochondrialuncoupling AT annapkipp partialinvolvementofnrf2inskeletalmusclemitohormesisasanadaptiveresponsetomitochondrialuncoupling AT marioost partialinvolvementofnrf2inskeletalmusclemitohormesisasanadaptiveresponsetomitochondrialuncoupling |
_version_ |
1718388094229544960 |