Feasibility of Data-Driven, Model-Free Quantitative MRI Protocol Design: Application to Brain and Prostate Diffusion-Relaxation Imaging

Purpose: We investigate the feasibility of data-driven, model-free quantitative MRI (qMRI) protocol design on in vivo brain and prostate diffusion-relaxation imaging (DRI).Methods: We select subsets of measurements within lengthy pilot scans, without identifying tissue parameters for which to optimi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Francesco Grussu, Stefano B. Blumberg, Marco Battiston, Lebina S. Kakkar, Hongxiang Lin, Andrada Ianuş, Torben Schneider, Saurabh Singh, Roger Bourne, Shonit Punwani, David Atkinson, Claudia A. M. Gandini Wheeler-Kingshott, Eleftheria Panagiotaki, Thomy Mertzanidou, Daniel C. Alexander
Formato: article
Lenguaje:EN
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://doaj.org/article/dde3530e76cb45218a05c5fe9fae8da8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:dde3530e76cb45218a05c5fe9fae8da8
record_format dspace
spelling oai:doaj.org-article:dde3530e76cb45218a05c5fe9fae8da82021-11-15T05:54:36ZFeasibility of Data-Driven, Model-Free Quantitative MRI Protocol Design: Application to Brain and Prostate Diffusion-Relaxation Imaging2296-424X10.3389/fphy.2021.752208https://doaj.org/article/dde3530e76cb45218a05c5fe9fae8da82021-11-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fphy.2021.752208/fullhttps://doaj.org/toc/2296-424XPurpose: We investigate the feasibility of data-driven, model-free quantitative MRI (qMRI) protocol design on in vivo brain and prostate diffusion-relaxation imaging (DRI).Methods: We select subsets of measurements within lengthy pilot scans, without identifying tissue parameters for which to optimise for. We use the “select and retrieve via direct upsampling” (SARDU-Net) algorithm, made of a selector, identifying measurement subsets, and a predictor, estimating fully-sampled signals from the subsets. We implement both using artificial neural networks, which are trained jointly end-to-end. We deploy the algorithm on brain (32 diffusion-/T1-weightings) and prostate (16 diffusion-/T2-weightings) DRI scans acquired on three healthy volunteers on two separate 3T Philips systems each. We used SARDU-Net to identify sub-protocols of fixed size, assessing reproducibility and testing sub-protocols for their potential to inform multi-contrast analyses via the T1-weighted spherical mean diffusion tensor (T1-SMDT, brain) and hybrid multi-dimensional MRI (HM-MRI, prostate) models, for which sub-protocol selection was not optimised explicitly.Results: In both brain and prostate, SARDU-Net identifies sub-protocols that maximise information content in a reproducible manner across training instantiations using a small number of pilot scans. The sub-protocols support T1-SMDT and HM-MRI multi-contrast modelling for which they were not optimised explicitly, providing signal quality-of-fit in the top 5% against extensive sub-protocol comparisons.Conclusions: Identifying economical but informative qMRI protocols from subsets of rich pilot scans is feasible and potentially useful in acquisition-time-sensitive applications in which there is not a qMRI model of choice. SARDU-Net is demonstrated to be a robust algorithm for data-driven, model-free protocol design.Francesco GrussuFrancesco GrussuFrancesco GrussuStefano B. BlumbergMarco BattistonLebina S. KakkarHongxiang LinAndrada IanuşTorben SchneiderTorben SchneiderSaurabh SinghRoger BourneShonit PunwaniDavid AtkinsonClaudia A. M. Gandini Wheeler-KingshottClaudia A. M. Gandini Wheeler-KingshottClaudia A. M. Gandini Wheeler-KingshottEleftheria PanagiotakiThomy MertzanidouDaniel C. AlexanderFrontiers Media S.A.articlequantitative MRI (qMRI)protocol designartificial neural network (ANN)diffusion-relaxationbrainprostatePhysicsQC1-999ENFrontiers in Physics, Vol 9 (2021)
institution DOAJ
collection DOAJ
language EN
topic quantitative MRI (qMRI)
protocol design
artificial neural network (ANN)
diffusion-relaxation
brain
prostate
Physics
QC1-999
spellingShingle quantitative MRI (qMRI)
protocol design
artificial neural network (ANN)
diffusion-relaxation
brain
prostate
Physics
QC1-999
Francesco Grussu
Francesco Grussu
Francesco Grussu
Stefano B. Blumberg
Marco Battiston
Lebina S. Kakkar
Hongxiang Lin
Andrada Ianuş
Torben Schneider
Torben Schneider
Saurabh Singh
Roger Bourne
Shonit Punwani
David Atkinson
Claudia A. M. Gandini Wheeler-Kingshott
Claudia A. M. Gandini Wheeler-Kingshott
Claudia A. M. Gandini Wheeler-Kingshott
Eleftheria Panagiotaki
Thomy Mertzanidou
Daniel C. Alexander
Feasibility of Data-Driven, Model-Free Quantitative MRI Protocol Design: Application to Brain and Prostate Diffusion-Relaxation Imaging
description Purpose: We investigate the feasibility of data-driven, model-free quantitative MRI (qMRI) protocol design on in vivo brain and prostate diffusion-relaxation imaging (DRI).Methods: We select subsets of measurements within lengthy pilot scans, without identifying tissue parameters for which to optimise for. We use the “select and retrieve via direct upsampling” (SARDU-Net) algorithm, made of a selector, identifying measurement subsets, and a predictor, estimating fully-sampled signals from the subsets. We implement both using artificial neural networks, which are trained jointly end-to-end. We deploy the algorithm on brain (32 diffusion-/T1-weightings) and prostate (16 diffusion-/T2-weightings) DRI scans acquired on three healthy volunteers on two separate 3T Philips systems each. We used SARDU-Net to identify sub-protocols of fixed size, assessing reproducibility and testing sub-protocols for their potential to inform multi-contrast analyses via the T1-weighted spherical mean diffusion tensor (T1-SMDT, brain) and hybrid multi-dimensional MRI (HM-MRI, prostate) models, for which sub-protocol selection was not optimised explicitly.Results: In both brain and prostate, SARDU-Net identifies sub-protocols that maximise information content in a reproducible manner across training instantiations using a small number of pilot scans. The sub-protocols support T1-SMDT and HM-MRI multi-contrast modelling for which they were not optimised explicitly, providing signal quality-of-fit in the top 5% against extensive sub-protocol comparisons.Conclusions: Identifying economical but informative qMRI protocols from subsets of rich pilot scans is feasible and potentially useful in acquisition-time-sensitive applications in which there is not a qMRI model of choice. SARDU-Net is demonstrated to be a robust algorithm for data-driven, model-free protocol design.
format article
author Francesco Grussu
Francesco Grussu
Francesco Grussu
Stefano B. Blumberg
Marco Battiston
Lebina S. Kakkar
Hongxiang Lin
Andrada Ianuş
Torben Schneider
Torben Schneider
Saurabh Singh
Roger Bourne
Shonit Punwani
David Atkinson
Claudia A. M. Gandini Wheeler-Kingshott
Claudia A. M. Gandini Wheeler-Kingshott
Claudia A. M. Gandini Wheeler-Kingshott
Eleftheria Panagiotaki
Thomy Mertzanidou
Daniel C. Alexander
author_facet Francesco Grussu
Francesco Grussu
Francesco Grussu
Stefano B. Blumberg
Marco Battiston
Lebina S. Kakkar
Hongxiang Lin
Andrada Ianuş
Torben Schneider
Torben Schneider
Saurabh Singh
Roger Bourne
Shonit Punwani
David Atkinson
Claudia A. M. Gandini Wheeler-Kingshott
Claudia A. M. Gandini Wheeler-Kingshott
Claudia A. M. Gandini Wheeler-Kingshott
Eleftheria Panagiotaki
Thomy Mertzanidou
Daniel C. Alexander
author_sort Francesco Grussu
title Feasibility of Data-Driven, Model-Free Quantitative MRI Protocol Design: Application to Brain and Prostate Diffusion-Relaxation Imaging
title_short Feasibility of Data-Driven, Model-Free Quantitative MRI Protocol Design: Application to Brain and Prostate Diffusion-Relaxation Imaging
title_full Feasibility of Data-Driven, Model-Free Quantitative MRI Protocol Design: Application to Brain and Prostate Diffusion-Relaxation Imaging
title_fullStr Feasibility of Data-Driven, Model-Free Quantitative MRI Protocol Design: Application to Brain and Prostate Diffusion-Relaxation Imaging
title_full_unstemmed Feasibility of Data-Driven, Model-Free Quantitative MRI Protocol Design: Application to Brain and Prostate Diffusion-Relaxation Imaging
title_sort feasibility of data-driven, model-free quantitative mri protocol design: application to brain and prostate diffusion-relaxation imaging
publisher Frontiers Media S.A.
publishDate 2021
url https://doaj.org/article/dde3530e76cb45218a05c5fe9fae8da8
work_keys_str_mv AT francescogrussu feasibilityofdatadrivenmodelfreequantitativemriprotocoldesignapplicationtobrainandprostatediffusionrelaxationimaging
AT francescogrussu feasibilityofdatadrivenmodelfreequantitativemriprotocoldesignapplicationtobrainandprostatediffusionrelaxationimaging
AT francescogrussu feasibilityofdatadrivenmodelfreequantitativemriprotocoldesignapplicationtobrainandprostatediffusionrelaxationimaging
AT stefanobblumberg feasibilityofdatadrivenmodelfreequantitativemriprotocoldesignapplicationtobrainandprostatediffusionrelaxationimaging
AT marcobattiston feasibilityofdatadrivenmodelfreequantitativemriprotocoldesignapplicationtobrainandprostatediffusionrelaxationimaging
AT lebinaskakkar feasibilityofdatadrivenmodelfreequantitativemriprotocoldesignapplicationtobrainandprostatediffusionrelaxationimaging
AT hongxianglin feasibilityofdatadrivenmodelfreequantitativemriprotocoldesignapplicationtobrainandprostatediffusionrelaxationimaging
AT andradaianus feasibilityofdatadrivenmodelfreequantitativemriprotocoldesignapplicationtobrainandprostatediffusionrelaxationimaging
AT torbenschneider feasibilityofdatadrivenmodelfreequantitativemriprotocoldesignapplicationtobrainandprostatediffusionrelaxationimaging
AT torbenschneider feasibilityofdatadrivenmodelfreequantitativemriprotocoldesignapplicationtobrainandprostatediffusionrelaxationimaging
AT saurabhsingh feasibilityofdatadrivenmodelfreequantitativemriprotocoldesignapplicationtobrainandprostatediffusionrelaxationimaging
AT rogerbourne feasibilityofdatadrivenmodelfreequantitativemriprotocoldesignapplicationtobrainandprostatediffusionrelaxationimaging
AT shonitpunwani feasibilityofdatadrivenmodelfreequantitativemriprotocoldesignapplicationtobrainandprostatediffusionrelaxationimaging
AT davidatkinson feasibilityofdatadrivenmodelfreequantitativemriprotocoldesignapplicationtobrainandprostatediffusionrelaxationimaging
AT claudiaamgandiniwheelerkingshott feasibilityofdatadrivenmodelfreequantitativemriprotocoldesignapplicationtobrainandprostatediffusionrelaxationimaging
AT claudiaamgandiniwheelerkingshott feasibilityofdatadrivenmodelfreequantitativemriprotocoldesignapplicationtobrainandprostatediffusionrelaxationimaging
AT claudiaamgandiniwheelerkingshott feasibilityofdatadrivenmodelfreequantitativemriprotocoldesignapplicationtobrainandprostatediffusionrelaxationimaging
AT eleftheriapanagiotaki feasibilityofdatadrivenmodelfreequantitativemriprotocoldesignapplicationtobrainandprostatediffusionrelaxationimaging
AT thomymertzanidou feasibilityofdatadrivenmodelfreequantitativemriprotocoldesignapplicationtobrainandprostatediffusionrelaxationimaging
AT danielcalexander feasibilityofdatadrivenmodelfreequantitativemriprotocoldesignapplicationtobrainandprostatediffusionrelaxationimaging
_version_ 1718428587130880000