Artificial van der Waals hybrid synapse and its application to acoustic pattern recognition
Designing high-performance and energy efficient neural network hardware remains a challenge. Here, the authors develop a van der Waals hybrid synaptic device that features linear and symmetric conductance-update characteristics and demonstrate the feasibility for hardware neural network performing a...
Guardado en:
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ddfeb437f955467eb2a0687b177b7f09 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:ddfeb437f955467eb2a0687b177b7f09 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:ddfeb437f955467eb2a0687b177b7f092021-12-02T14:53:44ZArtificial van der Waals hybrid synapse and its application to acoustic pattern recognition10.1038/s41467-020-17849-32041-1723https://doaj.org/article/ddfeb437f955467eb2a0687b177b7f092020-08-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-17849-3https://doaj.org/toc/2041-1723Designing high-performance and energy efficient neural network hardware remains a challenge. Here, the authors develop a van der Waals hybrid synaptic device that features linear and symmetric conductance-update characteristics and demonstrate the feasibility for hardware neural network performing acoustic pattern recognition.Seunghwan SeoBeom-Seok KangJe-Jun LeeHyo-Jun RyuSungjun KimHyeongjun KimSeyong OhJaewoo ShimKeun HeoSaeroonter OhJin-Hong ParkNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-9 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Seunghwan Seo Beom-Seok Kang Je-Jun Lee Hyo-Jun Ryu Sungjun Kim Hyeongjun Kim Seyong Oh Jaewoo Shim Keun Heo Saeroonter Oh Jin-Hong Park Artificial van der Waals hybrid synapse and its application to acoustic pattern recognition |
description |
Designing high-performance and energy efficient neural network hardware remains a challenge. Here, the authors develop a van der Waals hybrid synaptic device that features linear and symmetric conductance-update characteristics and demonstrate the feasibility for hardware neural network performing acoustic pattern recognition. |
format |
article |
author |
Seunghwan Seo Beom-Seok Kang Je-Jun Lee Hyo-Jun Ryu Sungjun Kim Hyeongjun Kim Seyong Oh Jaewoo Shim Keun Heo Saeroonter Oh Jin-Hong Park |
author_facet |
Seunghwan Seo Beom-Seok Kang Je-Jun Lee Hyo-Jun Ryu Sungjun Kim Hyeongjun Kim Seyong Oh Jaewoo Shim Keun Heo Saeroonter Oh Jin-Hong Park |
author_sort |
Seunghwan Seo |
title |
Artificial van der Waals hybrid synapse and its application to acoustic pattern recognition |
title_short |
Artificial van der Waals hybrid synapse and its application to acoustic pattern recognition |
title_full |
Artificial van der Waals hybrid synapse and its application to acoustic pattern recognition |
title_fullStr |
Artificial van der Waals hybrid synapse and its application to acoustic pattern recognition |
title_full_unstemmed |
Artificial van der Waals hybrid synapse and its application to acoustic pattern recognition |
title_sort |
artificial van der waals hybrid synapse and its application to acoustic pattern recognition |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/ddfeb437f955467eb2a0687b177b7f09 |
work_keys_str_mv |
AT seunghwanseo artificialvanderwaalshybridsynapseanditsapplicationtoacousticpatternrecognition AT beomseokkang artificialvanderwaalshybridsynapseanditsapplicationtoacousticpatternrecognition AT jejunlee artificialvanderwaalshybridsynapseanditsapplicationtoacousticpatternrecognition AT hyojunryu artificialvanderwaalshybridsynapseanditsapplicationtoacousticpatternrecognition AT sungjunkim artificialvanderwaalshybridsynapseanditsapplicationtoacousticpatternrecognition AT hyeongjunkim artificialvanderwaalshybridsynapseanditsapplicationtoacousticpatternrecognition AT seyongoh artificialvanderwaalshybridsynapseanditsapplicationtoacousticpatternrecognition AT jaewooshim artificialvanderwaalshybridsynapseanditsapplicationtoacousticpatternrecognition AT keunheo artificialvanderwaalshybridsynapseanditsapplicationtoacousticpatternrecognition AT saeroonteroh artificialvanderwaalshybridsynapseanditsapplicationtoacousticpatternrecognition AT jinhongpark artificialvanderwaalshybridsynapseanditsapplicationtoacousticpatternrecognition |
_version_ |
1718389418335666176 |