Artificial van der Waals hybrid synapse and its application to acoustic pattern recognition

Designing high-performance and energy efficient neural network hardware remains a challenge. Here, the authors develop a van der Waals hybrid synaptic device that features linear and symmetric conductance-update characteristics and demonstrate the feasibility for hardware neural network performing a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Seunghwan Seo, Beom-Seok Kang, Je-Jun Lee, Hyo-Jun Ryu, Sungjun Kim, Hyeongjun Kim, Seyong Oh, Jaewoo Shim, Keun Heo, Saeroonter Oh, Jin-Hong Park
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/ddfeb437f955467eb2a0687b177b7f09
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:ddfeb437f955467eb2a0687b177b7f09
record_format dspace
spelling oai:doaj.org-article:ddfeb437f955467eb2a0687b177b7f092021-12-02T14:53:44ZArtificial van der Waals hybrid synapse and its application to acoustic pattern recognition10.1038/s41467-020-17849-32041-1723https://doaj.org/article/ddfeb437f955467eb2a0687b177b7f092020-08-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-17849-3https://doaj.org/toc/2041-1723Designing high-performance and energy efficient neural network hardware remains a challenge. Here, the authors develop a van der Waals hybrid synaptic device that features linear and symmetric conductance-update characteristics and demonstrate the feasibility for hardware neural network performing acoustic pattern recognition.Seunghwan SeoBeom-Seok KangJe-Jun LeeHyo-Jun RyuSungjun KimHyeongjun KimSeyong OhJaewoo ShimKeun HeoSaeroonter OhJin-Hong ParkNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-9 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Seunghwan Seo
Beom-Seok Kang
Je-Jun Lee
Hyo-Jun Ryu
Sungjun Kim
Hyeongjun Kim
Seyong Oh
Jaewoo Shim
Keun Heo
Saeroonter Oh
Jin-Hong Park
Artificial van der Waals hybrid synapse and its application to acoustic pattern recognition
description Designing high-performance and energy efficient neural network hardware remains a challenge. Here, the authors develop a van der Waals hybrid synaptic device that features linear and symmetric conductance-update characteristics and demonstrate the feasibility for hardware neural network performing acoustic pattern recognition.
format article
author Seunghwan Seo
Beom-Seok Kang
Je-Jun Lee
Hyo-Jun Ryu
Sungjun Kim
Hyeongjun Kim
Seyong Oh
Jaewoo Shim
Keun Heo
Saeroonter Oh
Jin-Hong Park
author_facet Seunghwan Seo
Beom-Seok Kang
Je-Jun Lee
Hyo-Jun Ryu
Sungjun Kim
Hyeongjun Kim
Seyong Oh
Jaewoo Shim
Keun Heo
Saeroonter Oh
Jin-Hong Park
author_sort Seunghwan Seo
title Artificial van der Waals hybrid synapse and its application to acoustic pattern recognition
title_short Artificial van der Waals hybrid synapse and its application to acoustic pattern recognition
title_full Artificial van der Waals hybrid synapse and its application to acoustic pattern recognition
title_fullStr Artificial van der Waals hybrid synapse and its application to acoustic pattern recognition
title_full_unstemmed Artificial van der Waals hybrid synapse and its application to acoustic pattern recognition
title_sort artificial van der waals hybrid synapse and its application to acoustic pattern recognition
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/ddfeb437f955467eb2a0687b177b7f09
work_keys_str_mv AT seunghwanseo artificialvanderwaalshybridsynapseanditsapplicationtoacousticpatternrecognition
AT beomseokkang artificialvanderwaalshybridsynapseanditsapplicationtoacousticpatternrecognition
AT jejunlee artificialvanderwaalshybridsynapseanditsapplicationtoacousticpatternrecognition
AT hyojunryu artificialvanderwaalshybridsynapseanditsapplicationtoacousticpatternrecognition
AT sungjunkim artificialvanderwaalshybridsynapseanditsapplicationtoacousticpatternrecognition
AT hyeongjunkim artificialvanderwaalshybridsynapseanditsapplicationtoacousticpatternrecognition
AT seyongoh artificialvanderwaalshybridsynapseanditsapplicationtoacousticpatternrecognition
AT jaewooshim artificialvanderwaalshybridsynapseanditsapplicationtoacousticpatternrecognition
AT keunheo artificialvanderwaalshybridsynapseanditsapplicationtoacousticpatternrecognition
AT saeroonteroh artificialvanderwaalshybridsynapseanditsapplicationtoacousticpatternrecognition
AT jinhongpark artificialvanderwaalshybridsynapseanditsapplicationtoacousticpatternrecognition
_version_ 1718389418335666176