An Adaptive Deployment Algorithm for IaaS Cloud Virtual Machines Based on Q Learning Mechanism
When deploying infrastructure as a service (IaaS) cloud virtual machines using the existing algorithms, the deployment process cannot be simplified, and the algorithm is difficult to be applied. This leads to the problems of high energy consumption, high number of migrations, and high average servic...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/de0ef905e99e4506830f4a7feb4b81da |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | When deploying infrastructure as a service (IaaS) cloud virtual machines using the existing algorithms, the deployment process cannot be simplified, and the algorithm is difficult to be applied. This leads to the problems of high energy consumption, high number of migrations, and high average service-level agreement (SLA) violation rate. In order to solve the above problems, an adaptive deployment algorithm for IaaS cloud virtual machines based on Q learning mechanism is proposed in this research. Based on the deployment principle, the deployment characteristics of the IaaS cloud virtual machines are analyzed. The virtual machine scheduling problem is replaced with the Markov process. The multistep Q learning algorithm is used to schedule the virtual machines based on the Q learning mechanism to complete the adaptive deployment of the IaaS cloud virtual machines. Experimental results show that the proposed algorithm has low energy consumption, small number of migrations, and low average SLA violation rate. |
---|