Targeting MET in cancer therapy

MET encodes a receptor tyrosine kinase c-MET for hepatocyte growth factor (HGF). The specific combination of c-MET and HGF activates downstream signaling pathways to trigger cell migration, proliferation, and angiogenesis. MET exon 14 alterations and MET gene amplification play a critical role in th...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hong-Nan Mo, Peng Liu
Formato: article
Lenguaje:EN
Publicado: KeAi Communications Co., Ltd. 2017
Materias:
Acceso en línea:https://doaj.org/article/de222e61f8fd42a8a74c780b8dd370cb
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:MET encodes a receptor tyrosine kinase c-MET for hepatocyte growth factor (HGF). The specific combination of c-MET and HGF activates downstream signaling pathways to trigger cell migration, proliferation, and angiogenesis. MET exon 14 alterations and MET gene amplification play a critical role in the origin of cancer. Several monoclonal antibodies and small-molecule inhibitors of c-MET have been evaluated in clinical trials. In patients with advanced non-small cell lung cancer, cabozantinib and crizotinib showed clear efficacy with a generally tolerable adverse events profile. In gastrointestinal cancers, most phase III trials of MET inhibitors showed negative results. In hepatocellular carcinoma, based on the encouraging results of some phase II studies, a series of phase III trials are currently recruiting patients to access the efficacy and safety of MET inhibitors. Keywords: Proto-oncogene protein c-MET, Antineoplastic agents, Protein kinase inhibitors, Molecular targeted therapy