Size-tunable Lateral Confinement in Monolayer Semiconductors

Abstract Three-dimensional confinement allows semiconductor quantum dots to exhibit size-tunable electronic and optical properties that enable a wide range of opto-electronic applications from displays, solar cells and bio-medical imaging to single-electron devices. Additional modalities such as spi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Guohua Wei, David A. Czaplewski, Erik J. Lenferink, Teodor K. Stanev, Il Woong Jung, Nathaniel P. Stern
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/de36ec3376e54592bd2d162a424e063a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:de36ec3376e54592bd2d162a424e063a
record_format dspace
spelling oai:doaj.org-article:de36ec3376e54592bd2d162a424e063a2021-12-02T16:06:06ZSize-tunable Lateral Confinement in Monolayer Semiconductors10.1038/s41598-017-03594-z2045-2322https://doaj.org/article/de36ec3376e54592bd2d162a424e063a2017-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-03594-zhttps://doaj.org/toc/2045-2322Abstract Three-dimensional confinement allows semiconductor quantum dots to exhibit size-tunable electronic and optical properties that enable a wide range of opto-electronic applications from displays, solar cells and bio-medical imaging to single-electron devices. Additional modalities such as spin and valley properties in monolayer transition metal dichalcogenides provide further degrees of freedom requisite for information processing and spintronics. In nanostructures, however, spatial confinement can cause hybridization that inhibits the robustness of these emergent properties. Here, we show that laterally-confined excitons in monolayer MoS2 nanodots can be created through top-down nanopatterning with controlled size tunability. Unlike chemically-exfoliated monolayer nanoparticles, the lithographically patterned monolayer semiconductor nanodots down to a radius of 15 nm exhibit the same valley polarization as in a continuous monolayer sheet. The inherited bulk spin and valley properties, the size dependence of excitonic energies, and the ability to fabricate MoS2 nanostructures using semiconductor-compatible processing suggest that monolayer semiconductor nanodots have potential to be multimodal building blocks of integrated optoelectronics and spintronics systems.Guohua WeiDavid A. CzaplewskiErik J. LenferinkTeodor K. StanevIl Woong JungNathaniel P. SternNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-8 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Guohua Wei
David A. Czaplewski
Erik J. Lenferink
Teodor K. Stanev
Il Woong Jung
Nathaniel P. Stern
Size-tunable Lateral Confinement in Monolayer Semiconductors
description Abstract Three-dimensional confinement allows semiconductor quantum dots to exhibit size-tunable electronic and optical properties that enable a wide range of opto-electronic applications from displays, solar cells and bio-medical imaging to single-electron devices. Additional modalities such as spin and valley properties in monolayer transition metal dichalcogenides provide further degrees of freedom requisite for information processing and spintronics. In nanostructures, however, spatial confinement can cause hybridization that inhibits the robustness of these emergent properties. Here, we show that laterally-confined excitons in monolayer MoS2 nanodots can be created through top-down nanopatterning with controlled size tunability. Unlike chemically-exfoliated monolayer nanoparticles, the lithographically patterned monolayer semiconductor nanodots down to a radius of 15 nm exhibit the same valley polarization as in a continuous monolayer sheet. The inherited bulk spin and valley properties, the size dependence of excitonic energies, and the ability to fabricate MoS2 nanostructures using semiconductor-compatible processing suggest that monolayer semiconductor nanodots have potential to be multimodal building blocks of integrated optoelectronics and spintronics systems.
format article
author Guohua Wei
David A. Czaplewski
Erik J. Lenferink
Teodor K. Stanev
Il Woong Jung
Nathaniel P. Stern
author_facet Guohua Wei
David A. Czaplewski
Erik J. Lenferink
Teodor K. Stanev
Il Woong Jung
Nathaniel P. Stern
author_sort Guohua Wei
title Size-tunable Lateral Confinement in Monolayer Semiconductors
title_short Size-tunable Lateral Confinement in Monolayer Semiconductors
title_full Size-tunable Lateral Confinement in Monolayer Semiconductors
title_fullStr Size-tunable Lateral Confinement in Monolayer Semiconductors
title_full_unstemmed Size-tunable Lateral Confinement in Monolayer Semiconductors
title_sort size-tunable lateral confinement in monolayer semiconductors
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/de36ec3376e54592bd2d162a424e063a
work_keys_str_mv AT guohuawei sizetunablelateralconfinementinmonolayersemiconductors
AT davidaczaplewski sizetunablelateralconfinementinmonolayersemiconductors
AT erikjlenferink sizetunablelateralconfinementinmonolayersemiconductors
AT teodorkstanev sizetunablelateralconfinementinmonolayersemiconductors
AT ilwoongjung sizetunablelateralconfinementinmonolayersemiconductors
AT nathanielpstern sizetunablelateralconfinementinmonolayersemiconductors
_version_ 1718385119766511616