Symmetry Analysis, Exact Solutions and Conservation Laws of a Benjamin–Bona–Mahony–Burgers Equation in 2+1-Dimensions

The Benjamin–Bona–Mahony equation describes the unidirectional propagation of small-amplitude long waves on the surface of water in a channel. In this paper, we consider a family of generalized Benjamin–Bona–Mahony–Burgers equations depending on three arbitrary constants and an arbitrary function &l...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: María S. Bruzón, Tamara M. Garrido-Letrán, Rafael de la Rosa
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/de3eb7a45efd454e9ea0acfa067ac36a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The Benjamin–Bona–Mahony equation describes the unidirectional propagation of small-amplitude long waves on the surface of water in a channel. In this paper, we consider a family of generalized Benjamin–Bona–Mahony–Burgers equations depending on three arbitrary constants and an arbitrary function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>(</mo><mi>u</mi><mo>)</mo></mrow></semantics></math></inline-formula>. We study this family from the standpoint of the theory of symmetry reductions of partial differential equations. Firstly, we obtain the Lie point symmetries admitted by the considered family. Moreover, taking into account the admitted point symmetries, we perform symmetry reductions. In particular, for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>G</mi><mo>′</mo></msup><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>≠</mo><mn>0</mn></mrow></semantics></math></inline-formula>, we construct an optimal system of one-dimensional subalgebras for each maximal Lie algebra and deduce the corresponding (1+1)-dimensional nonlinear third-order partial differential equations. Then, we apply Kudryashov’s method to look for exact solutions of the nonlinear differential equation. We also determine line soliton solutions of the family of equations in a particular case. Lastly, through the multipliers method, we have constructed low-order conservation laws admitted by the family of equations.