Symmetry Analysis, Exact Solutions and Conservation Laws of a Benjamin–Bona–Mahony–Burgers Equation in 2+1-Dimensions
The Benjamin–Bona–Mahony equation describes the unidirectional propagation of small-amplitude long waves on the surface of water in a channel. In this paper, we consider a family of generalized Benjamin–Bona–Mahony–Burgers equations depending on three arbitrary constants and an arbitrary function &l...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/de3eb7a45efd454e9ea0acfa067ac36a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:de3eb7a45efd454e9ea0acfa067ac36a |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:de3eb7a45efd454e9ea0acfa067ac36a2021-11-25T19:06:36ZSymmetry Analysis, Exact Solutions and Conservation Laws of a Benjamin–Bona–Mahony–Burgers Equation in 2+1-Dimensions10.3390/sym131120832073-8994https://doaj.org/article/de3eb7a45efd454e9ea0acfa067ac36a2021-11-01T00:00:00Zhttps://www.mdpi.com/2073-8994/13/11/2083https://doaj.org/toc/2073-8994The Benjamin–Bona–Mahony equation describes the unidirectional propagation of small-amplitude long waves on the surface of water in a channel. In this paper, we consider a family of generalized Benjamin–Bona–Mahony–Burgers equations depending on three arbitrary constants and an arbitrary function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>(</mo><mi>u</mi><mo>)</mo></mrow></semantics></math></inline-formula>. We study this family from the standpoint of the theory of symmetry reductions of partial differential equations. Firstly, we obtain the Lie point symmetries admitted by the considered family. Moreover, taking into account the admitted point symmetries, we perform symmetry reductions. In particular, for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>G</mi><mo>′</mo></msup><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>≠</mo><mn>0</mn></mrow></semantics></math></inline-formula>, we construct an optimal system of one-dimensional subalgebras for each maximal Lie algebra and deduce the corresponding (1+1)-dimensional nonlinear third-order partial differential equations. Then, we apply Kudryashov’s method to look for exact solutions of the nonlinear differential equation. We also determine line soliton solutions of the family of equations in a particular case. Lastly, through the multipliers method, we have constructed low-order conservation laws admitted by the family of equations.María S. BruzónTamara M. Garrido-LetránRafael de la RosaMDPI AGarticleconservation lawsexact solutionsLie symmetriessymmetry reductionsMathematicsQA1-939ENSymmetry, Vol 13, Iss 2083, p 2083 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
conservation laws exact solutions Lie symmetries symmetry reductions Mathematics QA1-939 |
spellingShingle |
conservation laws exact solutions Lie symmetries symmetry reductions Mathematics QA1-939 María S. Bruzón Tamara M. Garrido-Letrán Rafael de la Rosa Symmetry Analysis, Exact Solutions and Conservation Laws of a Benjamin–Bona–Mahony–Burgers Equation in 2+1-Dimensions |
description |
The Benjamin–Bona–Mahony equation describes the unidirectional propagation of small-amplitude long waves on the surface of water in a channel. In this paper, we consider a family of generalized Benjamin–Bona–Mahony–Burgers equations depending on three arbitrary constants and an arbitrary function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>(</mo><mi>u</mi><mo>)</mo></mrow></semantics></math></inline-formula>. We study this family from the standpoint of the theory of symmetry reductions of partial differential equations. Firstly, we obtain the Lie point symmetries admitted by the considered family. Moreover, taking into account the admitted point symmetries, we perform symmetry reductions. In particular, for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>G</mi><mo>′</mo></msup><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>≠</mo><mn>0</mn></mrow></semantics></math></inline-formula>, we construct an optimal system of one-dimensional subalgebras for each maximal Lie algebra and deduce the corresponding (1+1)-dimensional nonlinear third-order partial differential equations. Then, we apply Kudryashov’s method to look for exact solutions of the nonlinear differential equation. We also determine line soliton solutions of the family of equations in a particular case. Lastly, through the multipliers method, we have constructed low-order conservation laws admitted by the family of equations. |
format |
article |
author |
María S. Bruzón Tamara M. Garrido-Letrán Rafael de la Rosa |
author_facet |
María S. Bruzón Tamara M. Garrido-Letrán Rafael de la Rosa |
author_sort |
María S. Bruzón |
title |
Symmetry Analysis, Exact Solutions and Conservation Laws of a Benjamin–Bona–Mahony–Burgers Equation in 2+1-Dimensions |
title_short |
Symmetry Analysis, Exact Solutions and Conservation Laws of a Benjamin–Bona–Mahony–Burgers Equation in 2+1-Dimensions |
title_full |
Symmetry Analysis, Exact Solutions and Conservation Laws of a Benjamin–Bona–Mahony–Burgers Equation in 2+1-Dimensions |
title_fullStr |
Symmetry Analysis, Exact Solutions and Conservation Laws of a Benjamin–Bona–Mahony–Burgers Equation in 2+1-Dimensions |
title_full_unstemmed |
Symmetry Analysis, Exact Solutions and Conservation Laws of a Benjamin–Bona–Mahony–Burgers Equation in 2+1-Dimensions |
title_sort |
symmetry analysis, exact solutions and conservation laws of a benjamin–bona–mahony–burgers equation in 2+1-dimensions |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/de3eb7a45efd454e9ea0acfa067ac36a |
work_keys_str_mv |
AT mariasbruzon symmetryanalysisexactsolutionsandconservationlawsofabenjaminbonamahonyburgersequationin21dimensions AT tamaramgarridoletran symmetryanalysisexactsolutionsandconservationlawsofabenjaminbonamahonyburgersequationin21dimensions AT rafaeldelarosa symmetryanalysisexactsolutionsandconservationlawsofabenjaminbonamahonyburgersequationin21dimensions |
_version_ |
1718410310348439552 |