Symmetry Analysis, Exact Solutions and Conservation Laws of a Benjamin–Bona–Mahony–Burgers Equation in 2+1-Dimensions

The Benjamin–Bona–Mahony equation describes the unidirectional propagation of small-amplitude long waves on the surface of water in a channel. In this paper, we consider a family of generalized Benjamin–Bona–Mahony–Burgers equations depending on three arbitrary constants and an arbitrary function &l...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: María S. Bruzón, Tamara M. Garrido-Letrán, Rafael de la Rosa
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/de3eb7a45efd454e9ea0acfa067ac36a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:de3eb7a45efd454e9ea0acfa067ac36a
record_format dspace
spelling oai:doaj.org-article:de3eb7a45efd454e9ea0acfa067ac36a2021-11-25T19:06:36ZSymmetry Analysis, Exact Solutions and Conservation Laws of a Benjamin–Bona–Mahony–Burgers Equation in 2+1-Dimensions10.3390/sym131120832073-8994https://doaj.org/article/de3eb7a45efd454e9ea0acfa067ac36a2021-11-01T00:00:00Zhttps://www.mdpi.com/2073-8994/13/11/2083https://doaj.org/toc/2073-8994The Benjamin–Bona–Mahony equation describes the unidirectional propagation of small-amplitude long waves on the surface of water in a channel. In this paper, we consider a family of generalized Benjamin–Bona–Mahony–Burgers equations depending on three arbitrary constants and an arbitrary function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>(</mo><mi>u</mi><mo>)</mo></mrow></semantics></math></inline-formula>. We study this family from the standpoint of the theory of symmetry reductions of partial differential equations. Firstly, we obtain the Lie point symmetries admitted by the considered family. Moreover, taking into account the admitted point symmetries, we perform symmetry reductions. In particular, for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>G</mi><mo>′</mo></msup><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>≠</mo><mn>0</mn></mrow></semantics></math></inline-formula>, we construct an optimal system of one-dimensional subalgebras for each maximal Lie algebra and deduce the corresponding (1+1)-dimensional nonlinear third-order partial differential equations. Then, we apply Kudryashov’s method to look for exact solutions of the nonlinear differential equation. We also determine line soliton solutions of the family of equations in a particular case. Lastly, through the multipliers method, we have constructed low-order conservation laws admitted by the family of equations.María S. BruzónTamara M. Garrido-LetránRafael de la RosaMDPI AGarticleconservation lawsexact solutionsLie symmetriessymmetry reductionsMathematicsQA1-939ENSymmetry, Vol 13, Iss 2083, p 2083 (2021)
institution DOAJ
collection DOAJ
language EN
topic conservation laws
exact solutions
Lie symmetries
symmetry reductions
Mathematics
QA1-939
spellingShingle conservation laws
exact solutions
Lie symmetries
symmetry reductions
Mathematics
QA1-939
María S. Bruzón
Tamara M. Garrido-Letrán
Rafael de la Rosa
Symmetry Analysis, Exact Solutions and Conservation Laws of a Benjamin–Bona–Mahony–Burgers Equation in 2+1-Dimensions
description The Benjamin–Bona–Mahony equation describes the unidirectional propagation of small-amplitude long waves on the surface of water in a channel. In this paper, we consider a family of generalized Benjamin–Bona–Mahony–Burgers equations depending on three arbitrary constants and an arbitrary function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>(</mo><mi>u</mi><mo>)</mo></mrow></semantics></math></inline-formula>. We study this family from the standpoint of the theory of symmetry reductions of partial differential equations. Firstly, we obtain the Lie point symmetries admitted by the considered family. Moreover, taking into account the admitted point symmetries, we perform symmetry reductions. In particular, for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>G</mi><mo>′</mo></msup><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>≠</mo><mn>0</mn></mrow></semantics></math></inline-formula>, we construct an optimal system of one-dimensional subalgebras for each maximal Lie algebra and deduce the corresponding (1+1)-dimensional nonlinear third-order partial differential equations. Then, we apply Kudryashov’s method to look for exact solutions of the nonlinear differential equation. We also determine line soliton solutions of the family of equations in a particular case. Lastly, through the multipliers method, we have constructed low-order conservation laws admitted by the family of equations.
format article
author María S. Bruzón
Tamara M. Garrido-Letrán
Rafael de la Rosa
author_facet María S. Bruzón
Tamara M. Garrido-Letrán
Rafael de la Rosa
author_sort María S. Bruzón
title Symmetry Analysis, Exact Solutions and Conservation Laws of a Benjamin–Bona–Mahony–Burgers Equation in 2+1-Dimensions
title_short Symmetry Analysis, Exact Solutions and Conservation Laws of a Benjamin–Bona–Mahony–Burgers Equation in 2+1-Dimensions
title_full Symmetry Analysis, Exact Solutions and Conservation Laws of a Benjamin–Bona–Mahony–Burgers Equation in 2+1-Dimensions
title_fullStr Symmetry Analysis, Exact Solutions and Conservation Laws of a Benjamin–Bona–Mahony–Burgers Equation in 2+1-Dimensions
title_full_unstemmed Symmetry Analysis, Exact Solutions and Conservation Laws of a Benjamin–Bona–Mahony–Burgers Equation in 2+1-Dimensions
title_sort symmetry analysis, exact solutions and conservation laws of a benjamin–bona–mahony–burgers equation in 2+1-dimensions
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/de3eb7a45efd454e9ea0acfa067ac36a
work_keys_str_mv AT mariasbruzon symmetryanalysisexactsolutionsandconservationlawsofabenjaminbonamahonyburgersequationin21dimensions
AT tamaramgarridoletran symmetryanalysisexactsolutionsandconservationlawsofabenjaminbonamahonyburgersequationin21dimensions
AT rafaeldelarosa symmetryanalysisexactsolutionsandconservationlawsofabenjaminbonamahonyburgersequationin21dimensions
_version_ 1718410310348439552