Effects of Pyrite Texture on Flotation Performance of Copper Sulfide Ores
Pyrite particles, having framboidal/altered texture, are known to significantly affect pulp chemistry and adversely affect flotation performance. Therefore, the main objectives of this study were to demonstrate influence of pyrite mineralogy on the flotation of copper (sulphidic) ores and develop al...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/de4dc2ffbf4f444898eeaec57af402fc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:de4dc2ffbf4f444898eeaec57af402fc |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:de4dc2ffbf4f444898eeaec57af402fc2021-11-25T18:26:22ZEffects of Pyrite Texture on Flotation Performance of Copper Sulfide Ores10.3390/min111112182075-163Xhttps://doaj.org/article/de4dc2ffbf4f444898eeaec57af402fc2021-11-01T00:00:00Zhttps://www.mdpi.com/2075-163X/11/11/1218https://doaj.org/toc/2075-163XPyrite particles, having framboidal/altered texture, are known to significantly affect pulp chemistry and adversely affect flotation performance. Therefore, the main objectives of this study were to demonstrate influence of pyrite mineralogy on the flotation of copper (sulphidic) ores and develop alternative conditions to improve the performance. Two copper ore samples (Ore A and Ore B) having different textural/modal mineralogy and flotation characteristics were taken from different zones of the same ore deposit. Ore B contained framboidal pyrite and altered pyrite/marcasite, which is considered the main reason for the low flotation performance in both copper and pyrite flotation sections of the process plant. Flotation tests were conducted under different conditions using the two ore samples and a 50:50 blend. The results showed that Ore A could be concentrated under the base conditions, as applied in the existing flotation plant. On the other hand, Ore B did not respond to the base conditions and a copper recovery of only 5% could be obtained. Besides, blending Ore B with Ore A negatively affected the flotation behavior of Ore A. An alternative flotation chemistry was applied on Ore B using Na<sub>2</sub>S for surface cleaning and Na-Metabisulfite (MBS) for pyrite depression in the copper flotation stage. The surface cleaning reduced the rate of oxidation of the framboidal pyrite in Ore B. As a result, the copper recovery could be increased to 52% Cu for Ore B, and 65% for the mixed ore sample.İlkay B. CanSeda ÖzçelikZafir EkmekçiMDPI AGarticleframboidal pyritesulfide mineralsflotationprocess mineralogyMineralogyQE351-399.2ENMinerals, Vol 11, Iss 1218, p 1218 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
framboidal pyrite sulfide minerals flotation process mineralogy Mineralogy QE351-399.2 |
spellingShingle |
framboidal pyrite sulfide minerals flotation process mineralogy Mineralogy QE351-399.2 İlkay B. Can Seda Özçelik Zafir Ekmekçi Effects of Pyrite Texture on Flotation Performance of Copper Sulfide Ores |
description |
Pyrite particles, having framboidal/altered texture, are known to significantly affect pulp chemistry and adversely affect flotation performance. Therefore, the main objectives of this study were to demonstrate influence of pyrite mineralogy on the flotation of copper (sulphidic) ores and develop alternative conditions to improve the performance. Two copper ore samples (Ore A and Ore B) having different textural/modal mineralogy and flotation characteristics were taken from different zones of the same ore deposit. Ore B contained framboidal pyrite and altered pyrite/marcasite, which is considered the main reason for the low flotation performance in both copper and pyrite flotation sections of the process plant. Flotation tests were conducted under different conditions using the two ore samples and a 50:50 blend. The results showed that Ore A could be concentrated under the base conditions, as applied in the existing flotation plant. On the other hand, Ore B did not respond to the base conditions and a copper recovery of only 5% could be obtained. Besides, blending Ore B with Ore A negatively affected the flotation behavior of Ore A. An alternative flotation chemistry was applied on Ore B using Na<sub>2</sub>S for surface cleaning and Na-Metabisulfite (MBS) for pyrite depression in the copper flotation stage. The surface cleaning reduced the rate of oxidation of the framboidal pyrite in Ore B. As a result, the copper recovery could be increased to 52% Cu for Ore B, and 65% for the mixed ore sample. |
format |
article |
author |
İlkay B. Can Seda Özçelik Zafir Ekmekçi |
author_facet |
İlkay B. Can Seda Özçelik Zafir Ekmekçi |
author_sort |
İlkay B. Can |
title |
Effects of Pyrite Texture on Flotation Performance of Copper Sulfide Ores |
title_short |
Effects of Pyrite Texture on Flotation Performance of Copper Sulfide Ores |
title_full |
Effects of Pyrite Texture on Flotation Performance of Copper Sulfide Ores |
title_fullStr |
Effects of Pyrite Texture on Flotation Performance of Copper Sulfide Ores |
title_full_unstemmed |
Effects of Pyrite Texture on Flotation Performance of Copper Sulfide Ores |
title_sort |
effects of pyrite texture on flotation performance of copper sulfide ores |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/de4dc2ffbf4f444898eeaec57af402fc |
work_keys_str_mv |
AT ilkaybcan effectsofpyritetextureonflotationperformanceofcoppersulfideores AT sedaozcelik effectsofpyritetextureonflotationperformanceofcoppersulfideores AT zafirekmekci effectsofpyritetextureonflotationperformanceofcoppersulfideores |
_version_ |
1718411164805758976 |