Development of a Hybrid Machine Learning Model for Asphalt Pavement Temperature Prediction
Machine learning (ML) models are excellent alternative solutions to model complex engineering issues with high reliability and accuracy. This paper presents two extensively explored ensemble models for predicting asphalt pavement temperature, the Markov chain Monte Carlo (MCMC) and random forest (RF...
Guardado en:
Autores principales: | Abdalrhman Abrahim Milad, Ibrahim Adwan, Sayf A. Majeed, Zubair Ahmed Memon, Munder Bilema, Hend Ali Omar, Maher G. M. Abdolrasol, Aliyu Usman, Nur Izzi Md Yusoff |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/de693643f8ab4c7680d51218dff2d2d2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Simplified empirical approach for predicting the remaining strength factor used in pavement rehabilitation applications
por: Khaled A. Abaza
Publicado: (2019) -
Improving the rutting resistance of asphalt pavement modified with the carbon nanotubes additive
por: Mohammed Q. Ismael, et al.
Publicado: (2021) -
Harvesting Solar Energy from Asphalt Pavement
por: Md Fahim Tanvir Hossain, et al.
Publicado: (2021) -
Evaluating the asphalt pavement's surface characteristics by field testing
por: Kaya Ozdemir,Derya, et al.
Publicado: (2020) -
Including reliability in the AASHTO-93 flexible pavement design method integrating pavement deterioration models
por: Rodríguez Moreno,Mario Alberto, et al.
Publicado: (2017)