Development of a Hybrid Machine Learning Model for Asphalt Pavement Temperature Prediction
Machine learning (ML) models are excellent alternative solutions to model complex engineering issues with high reliability and accuracy. This paper presents two extensively explored ensemble models for predicting asphalt pavement temperature, the Markov chain Monte Carlo (MCMC) and random forest (RF...
Enregistré dans:
Auteurs principaux: | Abdalrhman Abrahim Milad, Ibrahim Adwan, Sayf A. Majeed, Zubair Ahmed Memon, Munder Bilema, Hend Ali Omar, Maher G. M. Abdolrasol, Aliyu Usman, Nur Izzi Md Yusoff |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/de693643f8ab4c7680d51218dff2d2d2 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Simplified empirical approach for predicting the remaining strength factor used in pavement rehabilitation applications
par: Khaled A. Abaza
Publié: (2019) -
Improving the rutting resistance of asphalt pavement modified with the carbon nanotubes additive
par: Mohammed Q. Ismael, et autres
Publié: (2021) -
Harvesting Solar Energy from Asphalt Pavement
par: Md Fahim Tanvir Hossain, et autres
Publié: (2021) -
Evaluating the asphalt pavement's surface characteristics by field testing
par: Kaya Ozdemir,Derya, et autres
Publié: (2020) -
Including reliability in the AASHTO-93 flexible pavement design method integrating pavement deterioration models
par: Rodríguez Moreno,Mario Alberto, et autres
Publié: (2017)