High-veracity functional imaging in scanning probe microscopy via Graph-Bootstrapping
Scanning probe microscopy methods can generate high-dimensional data sets that correspond to a low-dimensional sample. Here, Li et al. develop a graphical bootstrapping method to quantitatively visualize large-scale high-dimensional datasets.
Guardado en:
Autores principales: | Xin Li, Liam Collins, Keisuke Miyazawa, Takeshi Fukuma, Stephen Jesse, Sergei V. Kalinin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/de694292df6149618162800cc85b6773 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Computer vision distortion correction of scanning probe microscopy images
por: Iaroslav Gaponenko, et al.
Publicado: (2017) -
Study on Elementary Process of Adhesive Wear Using Scanning Probe Microscopy
por: Alan Hase, et al.
Publicado: (2016) -
IoT Blockchain Data Veracity with Data Loss Tolerance
por: Kwai Cheong Moke, et al.
Publicado: (2021) -
Computational scanning tunneling microscope image database
por: Kamal Choudhary, et al.
Publicado: (2021) -
Tailoring heuristics and timing AI interventions for supporting news veracity assessments
por: Benjamin D. Horne, et al.
Publicado: (2020)