Novel Strategies for Disrupting Cancer-Cell Functions with Mitochondria-Targeted Antitumor Drug–Loaded Nanoformulations
Khaled S Allemailem,1,2 Ahmad Almatroudi,1 Mohammed A Alsahli,1 Aseel Aljaghwani,1 Asmaa M El-Kady,3 Arshad Husain Rahmani,1 Amjad Ali Khan2 1Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia; 2Department of Basic Health Sciences, Coll...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/de7074f41399431ea83a60a9034970ab |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:de7074f41399431ea83a60a9034970ab |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:de7074f41399431ea83a60a9034970ab2021-12-02T15:28:02ZNovel Strategies for Disrupting Cancer-Cell Functions with Mitochondria-Targeted Antitumor Drug–Loaded Nanoformulations1178-2013https://doaj.org/article/de7074f41399431ea83a60a9034970ab2021-06-01T00:00:00Zhttps://www.dovepress.com/novel-strategies-for-disrupting-cancer-cell-functions-with-mitochondri-peer-reviewed-fulltext-article-IJNhttps://doaj.org/toc/1178-2013Khaled S Allemailem,1,2 Ahmad Almatroudi,1 Mohammed A Alsahli,1 Aseel Aljaghwani,1 Asmaa M El-Kady,3 Arshad Husain Rahmani,1 Amjad Ali Khan2 1Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia; 2Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia; 3Department of Medical Parasitology, Faculty of Medicine, South Valley University, Qena, EgyptCorrespondence: Amjad Ali KhanDepartment of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, PO Box 6699, Buraydah, 51452, Saudi ArabiaTel +966-16-380-0050 Ext 4199Fax +96616 3801628Email akhan@qu.edu.saAbstract: Any variation in normal cellular function results in mitochondrial dysregulation that occurs in several diseases, including cancer. Such processes as oxidative stress, metabolism, signaling, and biogenesis play significant roles in cancer initiation and progression. Due to their central role in cellular metabolism, mitochondria are favorable therapeutic targets for the prevention and treatment of conditions like neurodegenerative diseases, diabetes, and cancer. Subcellular mitochondria-specific theranostic nanoformulations for simultaneous targeting, drug delivery, and imaging of these organelles are of immense interest in cancer therapy. It is a challenging task to cross multiple barriers to target mitochondria in diseased cells. To overcome these multiple barriers, several mitochondriotropic nanoformulations have been engineered for the transportation of mitochondria-specific drugs. These nanoformulations include liposomes, dendrimers, carbon nanotubes, polymeric nanoparticles (NPs), and inorganic NPs. These nanoformulations are made mitochondriotropic by conjugating them with moieties like dequalinium, Mito-Porter, triphenylphosphonium, and Mitochondria-penetrating peptides. Most of these nanoformulations are meticulously tailored to control their size, charge, shape, mitochondriotropic drug loading, and specific cell-membrane interactions. Recently, some novel mitochondria-selective antitumor compounds known as mitocans have shown high toxicity against cancer cells. These selective compounds form vicious oxidative stress and reactive oxygen species cycles within cancer cells and ultimately push them to cell death. Nanoformulations approved by the FDA and EMA for clinical applications in cancer patients include Doxil, NK105, and Abraxane. The novel use of these NPs still faces tremendous challenges and an immense amount of research is needed to understand the proper mechanisms of cancer progression and control by these NPs. Here in this review, we summarize current advancements and novel strategies of delivering different anticancer therapeutic agents to mitochondria with the help of various nanoformulations.Keywords: cancer, antitumor drugs, mitochondria targeting, theranostic nanoparticles, mitochondriopathiesAllemailem KSAlmatroudi AAlsahli MAAljaghwani AM El-Kady ARahmani AHKhan AADove Medical Pressarticlecancerantitumor drugsmitochondria-targetingtheranostic nanoparticlesmitochondriopathies.Medicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 16, Pp 3907-3936 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
cancer antitumor drugs mitochondria-targeting theranostic nanoparticles mitochondriopathies. Medicine (General) R5-920 |
spellingShingle |
cancer antitumor drugs mitochondria-targeting theranostic nanoparticles mitochondriopathies. Medicine (General) R5-920 Allemailem KS Almatroudi A Alsahli MA Aljaghwani A M El-Kady A Rahmani AH Khan AA Novel Strategies for Disrupting Cancer-Cell Functions with Mitochondria-Targeted Antitumor Drug–Loaded Nanoformulations |
description |
Khaled S Allemailem,1,2 Ahmad Almatroudi,1 Mohammed A Alsahli,1 Aseel Aljaghwani,1 Asmaa M El-Kady,3 Arshad Husain Rahmani,1 Amjad Ali Khan2 1Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia; 2Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia; 3Department of Medical Parasitology, Faculty of Medicine, South Valley University, Qena, EgyptCorrespondence: Amjad Ali KhanDepartment of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, PO Box 6699, Buraydah, 51452, Saudi ArabiaTel +966-16-380-0050 Ext 4199Fax +96616 3801628Email akhan@qu.edu.saAbstract: Any variation in normal cellular function results in mitochondrial dysregulation that occurs in several diseases, including cancer. Such processes as oxidative stress, metabolism, signaling, and biogenesis play significant roles in cancer initiation and progression. Due to their central role in cellular metabolism, mitochondria are favorable therapeutic targets for the prevention and treatment of conditions like neurodegenerative diseases, diabetes, and cancer. Subcellular mitochondria-specific theranostic nanoformulations for simultaneous targeting, drug delivery, and imaging of these organelles are of immense interest in cancer therapy. It is a challenging task to cross multiple barriers to target mitochondria in diseased cells. To overcome these multiple barriers, several mitochondriotropic nanoformulations have been engineered for the transportation of mitochondria-specific drugs. These nanoformulations include liposomes, dendrimers, carbon nanotubes, polymeric nanoparticles (NPs), and inorganic NPs. These nanoformulations are made mitochondriotropic by conjugating them with moieties like dequalinium, Mito-Porter, triphenylphosphonium, and Mitochondria-penetrating peptides. Most of these nanoformulations are meticulously tailored to control their size, charge, shape, mitochondriotropic drug loading, and specific cell-membrane interactions. Recently, some novel mitochondria-selective antitumor compounds known as mitocans have shown high toxicity against cancer cells. These selective compounds form vicious oxidative stress and reactive oxygen species cycles within cancer cells and ultimately push them to cell death. Nanoformulations approved by the FDA and EMA for clinical applications in cancer patients include Doxil, NK105, and Abraxane. The novel use of these NPs still faces tremendous challenges and an immense amount of research is needed to understand the proper mechanisms of cancer progression and control by these NPs. Here in this review, we summarize current advancements and novel strategies of delivering different anticancer therapeutic agents to mitochondria with the help of various nanoformulations.Keywords: cancer, antitumor drugs, mitochondria targeting, theranostic nanoparticles, mitochondriopathies |
format |
article |
author |
Allemailem KS Almatroudi A Alsahli MA Aljaghwani A M El-Kady A Rahmani AH Khan AA |
author_facet |
Allemailem KS Almatroudi A Alsahli MA Aljaghwani A M El-Kady A Rahmani AH Khan AA |
author_sort |
Allemailem KS |
title |
Novel Strategies for Disrupting Cancer-Cell Functions with Mitochondria-Targeted Antitumor Drug–Loaded Nanoformulations |
title_short |
Novel Strategies for Disrupting Cancer-Cell Functions with Mitochondria-Targeted Antitumor Drug–Loaded Nanoformulations |
title_full |
Novel Strategies for Disrupting Cancer-Cell Functions with Mitochondria-Targeted Antitumor Drug–Loaded Nanoformulations |
title_fullStr |
Novel Strategies for Disrupting Cancer-Cell Functions with Mitochondria-Targeted Antitumor Drug–Loaded Nanoformulations |
title_full_unstemmed |
Novel Strategies for Disrupting Cancer-Cell Functions with Mitochondria-Targeted Antitumor Drug–Loaded Nanoformulations |
title_sort |
novel strategies for disrupting cancer-cell functions with mitochondria-targeted antitumor drug–loaded nanoformulations |
publisher |
Dove Medical Press |
publishDate |
2021 |
url |
https://doaj.org/article/de7074f41399431ea83a60a9034970ab |
work_keys_str_mv |
AT allemailemks novelstrategiesfordisruptingcancercellfunctionswithmitochondriatargetedantitumordrugndashloadednanoformulations AT almatroudia novelstrategiesfordisruptingcancercellfunctionswithmitochondriatargetedantitumordrugndashloadednanoformulations AT alsahlima novelstrategiesfordisruptingcancercellfunctionswithmitochondriatargetedantitumordrugndashloadednanoformulations AT aljaghwania novelstrategiesfordisruptingcancercellfunctionswithmitochondriatargetedantitumordrugndashloadednanoformulations AT melkadya novelstrategiesfordisruptingcancercellfunctionswithmitochondriatargetedantitumordrugndashloadednanoformulations AT rahmaniah novelstrategiesfordisruptingcancercellfunctionswithmitochondriatargetedantitumordrugndashloadednanoformulations AT khanaa novelstrategiesfordisruptingcancercellfunctionswithmitochondriatargetedantitumordrugndashloadednanoformulations |
_version_ |
1718387235797073920 |