Hybrid Deep Spatio-Temporal Models for Traffic Flow Prediction on Holidays and Under Adverse Weather
Three hybrid deep spatio-temporal models are proposed to accurately predict traffic flow under normal conditions, on holidays and under adverse weather. Each of the proposed models consists of the global and target parts, and fuses the weather and traffic flow data obtained from the target and upstr...
Guardado en:
Autores principales: | Wensong Zhang, Ronghan Yao, Xiaojing Du, Jinsong Ye |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/de72da522d1c45ee95aba4884296acc4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Automatic Sequence-Based Network for Lung Diseases Detection in Chest CT
por: Jinkui Hao, et al.
Publicado: (2021) -
Hyperspectral Image Classification via a Novel Spectral–Spatial 3D ConvLSTM-CNN
por: Ghulam Farooque, et al.
Publicado: (2021) -
Modern Holiday Calendar of the Russians
por: Alexandra Frolova
Publicado: (2016) -
Prediction of Dominant Ocean Parameters for Sustainable Marine Environment
por: D. Menaka, et al.
Publicado: (2021) -
DSTnet: Deformable Spatio-Temporal Convolutional Residual Network for Video Super-Resolution
por: Anusha Khan, et al.
Publicado: (2021)