Machine Learning (ML) Based Thermal Management for Cooling of Electronics Chips by Utilizing Thermal Energy Storage (TES) in Packaging That Leverages Phase Change Materials (PCM)
Miniaturization of electronics devices is often limited by the concomitant high heat fluxes (cooling load) and maldistribution of temperature profiles (hot spots). Thermal energy storage (TES) platforms providing supplemental cooling can be a cost-effective solution, that often leverages phase chang...
Enregistré dans:
Auteurs principaux: | Aditya Chuttar, Debjyoti Banerjee |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/de7dd1e229db4f9d8cf2b222d93981b6 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Under-FET Thermal Sensor Enabling Smart Full-Chip Run-Time Thermal Management
par: Cheng Li, et autres
Publié: (2020) -
Thermal Comfort and Energy Analysis of a Hybrid Cooling System by Coupling Natural Ventilation with Radiant and Indirect Evaporative Cooling
par: Pradeep Shakya, et autres
Publié: (2021) -
Increasing the energy efficiency of a building by thermal insulation to reduce the thermal load of the micro-combined cooling, heating and power system
par: Spiru Paraschiv, et autres
Publié: (2021) -
Thermal Storage for District Cooling—Implications for Renewable Energy Transition
par: Efstathios E. Michaelides
Publié: (2021) -
Investigation and optimization of PCM melting with nanoparticle in a multi-tube thermal energy storage system
par: Hadi Bashirpour-Bonab
Publié: (2021)