Cloud Process Coupling and Time Integration in the E3SM Atmosphere Model
Abstract In this study, we find significant sensitivity to the choice of time step for the Energy Exascale Earth System Model's atmospheric component, leading to large decreases in the magnitude of cloud forcing when the time step is reduced to 10 s. Reducing the time step size for the microphy...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Geophysical Union (AGU)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/de83fde07fe84957ab69d11e2e7da253 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:de83fde07fe84957ab69d11e2e7da253 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:de83fde07fe84957ab69d11e2e7da2532021-11-24T08:11:41ZCloud Process Coupling and Time Integration in the E3SM Atmosphere Model1942-246610.1029/2020MS002359https://doaj.org/article/de83fde07fe84957ab69d11e2e7da2532021-05-01T00:00:00Zhttps://doi.org/10.1029/2020MS002359https://doaj.org/toc/1942-2466Abstract In this study, we find significant sensitivity to the choice of time step for the Energy Exascale Earth System Model's atmospheric component, leading to large decreases in the magnitude of cloud forcing when the time step is reduced to 10 s. Reducing the time step size for the microphysics increases precipitation, leading to a drying of the atmosphere and an increase in surface evaporation. This effect is amplified when the microphysics is substepped together with other cloud physics processes. Coupling the model's dynamics and physics more frequently reduces cloud fraction at lower altitudes, while producing more cloud liquid at higher altitudes. Reducing the deep convection time step also reduces low cloud mass and cloud fraction. Together, these results suggest that cloud physics in a global circulation model can depend strongly on time step and, in particular, on the frequency with which cloud‐related processes are coupled with each other and with the model dynamics.Sean Patrick SantosPeter M. CaldwellChristopher S. BrethertonAmerican Geophysical Union (AGU)articleE3SMGCMprocess couplingtime stepPhysical geographyGB3-5030OceanographyGC1-1581ENJournal of Advances in Modeling Earth Systems, Vol 13, Iss 5, Pp n/a-n/a (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
E3SM GCM process coupling time step Physical geography GB3-5030 Oceanography GC1-1581 |
spellingShingle |
E3SM GCM process coupling time step Physical geography GB3-5030 Oceanography GC1-1581 Sean Patrick Santos Peter M. Caldwell Christopher S. Bretherton Cloud Process Coupling and Time Integration in the E3SM Atmosphere Model |
description |
Abstract In this study, we find significant sensitivity to the choice of time step for the Energy Exascale Earth System Model's atmospheric component, leading to large decreases in the magnitude of cloud forcing when the time step is reduced to 10 s. Reducing the time step size for the microphysics increases precipitation, leading to a drying of the atmosphere and an increase in surface evaporation. This effect is amplified when the microphysics is substepped together with other cloud physics processes. Coupling the model's dynamics and physics more frequently reduces cloud fraction at lower altitudes, while producing more cloud liquid at higher altitudes. Reducing the deep convection time step also reduces low cloud mass and cloud fraction. Together, these results suggest that cloud physics in a global circulation model can depend strongly on time step and, in particular, on the frequency with which cloud‐related processes are coupled with each other and with the model dynamics. |
format |
article |
author |
Sean Patrick Santos Peter M. Caldwell Christopher S. Bretherton |
author_facet |
Sean Patrick Santos Peter M. Caldwell Christopher S. Bretherton |
author_sort |
Sean Patrick Santos |
title |
Cloud Process Coupling and Time Integration in the E3SM Atmosphere Model |
title_short |
Cloud Process Coupling and Time Integration in the E3SM Atmosphere Model |
title_full |
Cloud Process Coupling and Time Integration in the E3SM Atmosphere Model |
title_fullStr |
Cloud Process Coupling and Time Integration in the E3SM Atmosphere Model |
title_full_unstemmed |
Cloud Process Coupling and Time Integration in the E3SM Atmosphere Model |
title_sort |
cloud process coupling and time integration in the e3sm atmosphere model |
publisher |
American Geophysical Union (AGU) |
publishDate |
2021 |
url |
https://doaj.org/article/de83fde07fe84957ab69d11e2e7da253 |
work_keys_str_mv |
AT seanpatricksantos cloudprocesscouplingandtimeintegrationinthee3smatmospheremodel AT petermcaldwell cloudprocesscouplingandtimeintegrationinthee3smatmospheremodel AT christophersbretherton cloudprocesscouplingandtimeintegrationinthee3smatmospheremodel |
_version_ |
1718415829203156992 |