Artificial Neural Network Algorithms to Predict Resting Energy Expenditure in Critically Ill Children

Introduction: Accurate assessment of resting energy expenditure (REE) can guide optimal nutritional prescription in critically ill children. Indirect calorimetry (IC) is the gold standard for REE measurement, but its use is limited. Alternatively, REE estimates by predictive equations/formulae are o...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Giulia C. I. Spolidoro, Veronica D’Oria, Valentina De Cosmi, Gregorio Paolo Milani, Alessandra Mazzocchi, Alireza Akhondi-Asl, Nilesh M. Mehta, Carlo Agostoni, Edoardo Calderini, Enzo Grossi
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/dea44dbd8ee1489487fc373d4b760e2e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:dea44dbd8ee1489487fc373d4b760e2e
record_format dspace
spelling oai:doaj.org-article:dea44dbd8ee1489487fc373d4b760e2e2021-11-25T18:34:10ZArtificial Neural Network Algorithms to Predict Resting Energy Expenditure in Critically Ill Children10.3390/nu131137972072-6643https://doaj.org/article/dea44dbd8ee1489487fc373d4b760e2e2021-10-01T00:00:00Zhttps://www.mdpi.com/2072-6643/13/11/3797https://doaj.org/toc/2072-6643Introduction: Accurate assessment of resting energy expenditure (REE) can guide optimal nutritional prescription in critically ill children. Indirect calorimetry (IC) is the gold standard for REE measurement, but its use is limited. Alternatively, REE estimates by predictive equations/formulae are often inaccurate. Recently, predicting REE with artificial neural networks (ANN) was found to be accurate in healthy children. We aimed to investigate the role of ANN in predicting REE in critically ill children and to compare the accuracy with common equations/formulae. Study methods: We enrolled 257 critically ill children. Nutritional status/vital signs/biochemical values were recorded. We used IC to measure REE. Commonly employed equations/formulae and the VCO<sub>2</sub>-based Mehta equation were estimated. ANN analysis to predict REE was conducted, employing the TWIST system. Results: ANN considered demographic/anthropometric data to model REE. The predictive model was good (accuracy 75.6%; R<sup>2</sup> = 0.71) but not better than Talbot tables for weight. After adding vital signs/biochemical values, the model became superior to all equations/formulae (accuracy 82.3%, R<sup>2</sup> = 0.80) and comparable to the Mehta equation. Including IC-measured VCO<sub>2</sub> increased the accuracy to 89.6%, superior to the Mehta equation. Conclusions: We described the accuracy of REE prediction using models that include demographic/anthropometric/clinical/metabolic variables. ANN may represent a reliable option for REE estimation, overcoming the inaccuracies of traditional predictive equations/formulae.Giulia C. I. SpolidoroVeronica D’OriaValentina De CosmiGregorio Paolo MilaniAlessandra MazzocchiAlireza Akhondi-AslNilesh M. MehtaCarlo AgostoniEdoardo CalderiniEnzo GrossiMDPI AGarticleenergy expendituremetabolismnutritionchildrenpediatricscritical careNutrition. Foods and food supplyTX341-641ENNutrients, Vol 13, Iss 3797, p 3797 (2021)
institution DOAJ
collection DOAJ
language EN
topic energy expenditure
metabolism
nutrition
children
pediatrics
critical care
Nutrition. Foods and food supply
TX341-641
spellingShingle energy expenditure
metabolism
nutrition
children
pediatrics
critical care
Nutrition. Foods and food supply
TX341-641
Giulia C. I. Spolidoro
Veronica D’Oria
Valentina De Cosmi
Gregorio Paolo Milani
Alessandra Mazzocchi
Alireza Akhondi-Asl
Nilesh M. Mehta
Carlo Agostoni
Edoardo Calderini
Enzo Grossi
Artificial Neural Network Algorithms to Predict Resting Energy Expenditure in Critically Ill Children
description Introduction: Accurate assessment of resting energy expenditure (REE) can guide optimal nutritional prescription in critically ill children. Indirect calorimetry (IC) is the gold standard for REE measurement, but its use is limited. Alternatively, REE estimates by predictive equations/formulae are often inaccurate. Recently, predicting REE with artificial neural networks (ANN) was found to be accurate in healthy children. We aimed to investigate the role of ANN in predicting REE in critically ill children and to compare the accuracy with common equations/formulae. Study methods: We enrolled 257 critically ill children. Nutritional status/vital signs/biochemical values were recorded. We used IC to measure REE. Commonly employed equations/formulae and the VCO<sub>2</sub>-based Mehta equation were estimated. ANN analysis to predict REE was conducted, employing the TWIST system. Results: ANN considered demographic/anthropometric data to model REE. The predictive model was good (accuracy 75.6%; R<sup>2</sup> = 0.71) but not better than Talbot tables for weight. After adding vital signs/biochemical values, the model became superior to all equations/formulae (accuracy 82.3%, R<sup>2</sup> = 0.80) and comparable to the Mehta equation. Including IC-measured VCO<sub>2</sub> increased the accuracy to 89.6%, superior to the Mehta equation. Conclusions: We described the accuracy of REE prediction using models that include demographic/anthropometric/clinical/metabolic variables. ANN may represent a reliable option for REE estimation, overcoming the inaccuracies of traditional predictive equations/formulae.
format article
author Giulia C. I. Spolidoro
Veronica D’Oria
Valentina De Cosmi
Gregorio Paolo Milani
Alessandra Mazzocchi
Alireza Akhondi-Asl
Nilesh M. Mehta
Carlo Agostoni
Edoardo Calderini
Enzo Grossi
author_facet Giulia C. I. Spolidoro
Veronica D’Oria
Valentina De Cosmi
Gregorio Paolo Milani
Alessandra Mazzocchi
Alireza Akhondi-Asl
Nilesh M. Mehta
Carlo Agostoni
Edoardo Calderini
Enzo Grossi
author_sort Giulia C. I. Spolidoro
title Artificial Neural Network Algorithms to Predict Resting Energy Expenditure in Critically Ill Children
title_short Artificial Neural Network Algorithms to Predict Resting Energy Expenditure in Critically Ill Children
title_full Artificial Neural Network Algorithms to Predict Resting Energy Expenditure in Critically Ill Children
title_fullStr Artificial Neural Network Algorithms to Predict Resting Energy Expenditure in Critically Ill Children
title_full_unstemmed Artificial Neural Network Algorithms to Predict Resting Energy Expenditure in Critically Ill Children
title_sort artificial neural network algorithms to predict resting energy expenditure in critically ill children
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/dea44dbd8ee1489487fc373d4b760e2e
work_keys_str_mv AT giuliacispolidoro artificialneuralnetworkalgorithmstopredictrestingenergyexpenditureincriticallyillchildren
AT veronicadoria artificialneuralnetworkalgorithmstopredictrestingenergyexpenditureincriticallyillchildren
AT valentinadecosmi artificialneuralnetworkalgorithmstopredictrestingenergyexpenditureincriticallyillchildren
AT gregoriopaolomilani artificialneuralnetworkalgorithmstopredictrestingenergyexpenditureincriticallyillchildren
AT alessandramazzocchi artificialneuralnetworkalgorithmstopredictrestingenergyexpenditureincriticallyillchildren
AT alirezaakhondiasl artificialneuralnetworkalgorithmstopredictrestingenergyexpenditureincriticallyillchildren
AT nileshmmehta artificialneuralnetworkalgorithmstopredictrestingenergyexpenditureincriticallyillchildren
AT carloagostoni artificialneuralnetworkalgorithmstopredictrestingenergyexpenditureincriticallyillchildren
AT edoardocalderini artificialneuralnetworkalgorithmstopredictrestingenergyexpenditureincriticallyillchildren
AT enzogrossi artificialneuralnetworkalgorithmstopredictrestingenergyexpenditureincriticallyillchildren
_version_ 1718410983911718912