Artificial Neural Network Algorithms to Predict Resting Energy Expenditure in Critically Ill Children
Introduction: Accurate assessment of resting energy expenditure (REE) can guide optimal nutritional prescription in critically ill children. Indirect calorimetry (IC) is the gold standard for REE measurement, but its use is limited. Alternatively, REE estimates by predictive equations/formulae are o...
Guardado en:
Autores principales: | Giulia C. I. Spolidoro, Veronica D’Oria, Valentina De Cosmi, Gregorio Paolo Milani, Alessandra Mazzocchi, Alireza Akhondi-Asl, Nilesh M. Mehta, Carlo Agostoni, Edoardo Calderini, Enzo Grossi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dea44dbd8ee1489487fc373d4b760e2e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Multidisciplinary Perspective of Ultra-Processed Foods and Associated Food Processing Technologies: A View of the Sustainable Road Ahead
por: Francesco Capozzi, et al.
Publicado: (2021) -
Assessing the changes in iranian household food basket using national household budget and expenditure survey data, 1991–2017
por: Seyyed Reza Sobhani, et al.
Publicado: (2021) -
Evaluation of The Implementation of Fe Tablets for Adolescent Girl in 2019 at Pekanbaru City
por: Fathia Maulida, et al.
Publicado: (2021) -
Use Database to Evaluate the Prevalence of Hunger Among Adolescents in Brazil
por: Ana Laura Benevenuto de Amorim, et al.
Publicado: (2021) -
High Iodine Urinary Concentration Is Associated with High TSH Levels but Not with Nutrition Status in Schoolchildren of Northeastern Mexico
por: Aidy Gonzalez-Nunez, et al.
Publicado: (2021)