Machine learning applications for prediction of relapse in childhood acute lymphoblastic leukemia
Abstract The prediction of relapse in childhood acute lymphoblastic leukemia (ALL) is a critical factor for successful treatment and follow-up planning. Our goal was to construct an ALL relapse prediction model based on machine learning algorithms. Monte Carlo cross-validation nested by 10-fold cros...
Guardado en:
Autores principales: | Liyan Pan, Guangjian Liu, Fangqin Lin, Shuling Zhong, Huimin Xia, Xin Sun, Huiying Liang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dea91707cbc6485f9137aa31ade2002e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Health-related quality of life in long-term survivors of relapsed childhood acute lymphoblastic leukemia.
por: Stefan Essig, et al.
Publicado: (2012) -
Profound leukemia cutis in a patient with relapsed T-cell acute lymphoblastic leukemia
por: Ambika Nohria, BA, et al.
Publicado: (2021) -
Clinical characteristics of tumor lysis syndrome in childhood acute lymphoblastic leukemia
por: Yao Xue, et al.
Publicado: (2021) -
Other (Non-CNS/Testicular) Extramedullary Localizations of Childhood Relapsed Acute Lymphoblastic Leukemia and Lymphoblastic Lymphoma—A Report from the ALL-REZ Study Group
por: Andrej Lissat, et al.
Publicado: (2021) -
Biomarkers of cardiometabolic complications in survivors of childhood acute lymphoblastic leukemia
por: Sophia Morel, et al.
Publicado: (2020)