Histogram Entropy Representation and Prototype Based Machine Learning Approach for Malware Family Classification
The number of malware has steadily increased as malware spread and evasion techniques have advanced. Machine learning has contributed to making malware analysis more efficient by detecting various behavioral and evasion patterns. However, when analyzing large-scale malware datasets, malware analysis...
Guardado en:
Autores principales: | Byunghyun Baek, Seoungyul Euh, Dongheon Baek, Donghoon Kim, Doosung Hwang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/deaead13448e41498741bd0ea8718439 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Fuzzy Integral-Based Multi-Classifiers Ensemble for Android Malware Classification
por: Altyeb Taha, et al.
Publicado: (2021) -
Android Malware Detection Using Machine Learning with Feature Selection Based on the Genetic Algorithm
por: Jaehyeong Lee, et al.
Publicado: (2021) -
Analisis Klasterisasi Malware: Evaluasi Data Training Dalam Proses Klasifikasi Malware
por: Denar Regata Akbi, et al.
Publicado: (2018) -
LSGAN-AT: enhancing malware detector robustness against adversarial examples
por: Jianhua Wang, et al.
Publicado: (2021) -
Recent Advances in Android Mobile Malware Detection: A Systematic Literature Review
por: Abdulaziz Alzubaidi
Publicado: (2021)