Histogram Entropy Representation and Prototype Based Machine Learning Approach for Malware Family Classification

The number of malware has steadily increased as malware spread and evasion techniques have advanced. Machine learning has contributed to making malware analysis more efficient by detecting various behavioral and evasion patterns. However, when analyzing large-scale malware datasets, malware analysis...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Byunghyun Baek, Seoungyul Euh, Dongheon Baek, Donghoon Kim, Doosung Hwang
Format: article
Langue:EN
Publié: IEEE 2021
Sujets:
Accès en ligne:https://doaj.org/article/deaead13448e41498741bd0ea8718439
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!