Privacy-first health research with federated learning

Abstract Privacy protection is paramount in conducting health research. However, studies often rely on data stored in a centralized repository, where analysis is done with full access to the sensitive underlying content. Recent advances in federated learning enable building complex machine-learned m...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Adam Sadilek, Luyang Liu, Dung Nguyen, Methun Kamruzzaman, Stylianos Serghiou, Benjamin Rader, Alex Ingerman, Stefan Mellem, Peter Kairouz, Elaine O. Nsoesie, Jamie MacFarlane, Anil Vullikanti, Madhav Marathe, Paul Eastham, John S. Brownstein, Blaise Aguera y. Arcas, Michael D. Howell, John Hernandez
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/decac40d76f04fc18e73402b619ffedc
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares