Privacy-first health research with federated learning
Abstract Privacy protection is paramount in conducting health research. However, studies often rely on data stored in a centralized repository, where analysis is done with full access to the sensitive underlying content. Recent advances in federated learning enable building complex machine-learned m...
Guardado en:
Autores principales: | Adam Sadilek, Luyang Liu, Dung Nguyen, Methun Kamruzzaman, Stylianos Serghiou, Benjamin Rader, Alex Ingerman, Stefan Mellem, Peter Kairouz, Elaine O. Nsoesie, Jamie MacFarlane, Anil Vullikanti, Madhav Marathe, Paul Eastham, John S. Brownstein, Blaise Aguera y. Arcas, Michael D. Howell, John Hernandez |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/decac40d76f04fc18e73402b619ffedc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Forecasting influenza activity using machine-learned mobility map
por: Srinivasan Venkatramanan, et al.
Publicado: (2021) -
Human initiated cascading failures in societal infrastructures.
por: Chris Barrett, et al.
Publicado: (2012) -
Re: CaRMS at 50
por: Malcolm MacFarlane
Publicado: (2020) -
When a Canadian is not a Canadian: marginalization of IMGs in the CaRMS match
por: Malcolm M MacFarlane
Publicado: (2021) -
Asymptomatic individuals can increase the final epidemic size under adaptive human behavior
por: Baltazar Espinoza, et al.
Publicado: (2021)