Identification of non-activated lymphocytes using three-dimensional refractive index tomography and machine learning
Abstract Identification of lymphocyte cell types are crucial for understanding their pathophysiological roles in human diseases. Current methods for discriminating lymphocyte cell types primarily rely on labelling techniques with magnetic beads or fluorescence agents, which take time and have costs...
Guardado en:
Autores principales: | Jonghee Yoon, YoungJu Jo, Min-hyeok Kim, Kyoohyun Kim, SangYun Lee, Suk-Jo Kang, YongKeun Park |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/ded0362970904ae4984e1ec9cf6eb7f9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Tomographic active optical trapping of arbitrarily shaped objects by exploiting 3D refractive index maps
por: Kyoohyun Kim, et al.
Publicado: (2017) -
Refractive index tomograms and dynamic membrane fluctuations of red blood cells from patients with diabetes mellitus
por: SangYun Lee, et al.
Publicado: (2017) -
Deep learning-based optical field screening for robust optical diffraction tomography
por: DongHun Ryu, et al.
Publicado: (2019) -
Measurements of complex refractive index change of photoactive yellow protein over a wide wavelength range using hyperspectral quantitative phase imaging
por: KyeoReh Lee, et al.
Publicado: (2018) -
Highly tunable refractive index visible-light metasurface from block copolymer self-assembly
por: Ju Young Kim, et al.
Publicado: (2016)