Event generation and statistical sampling for physics with deep generative models and a density information buffer
Here, the authors report buffered-density variational autoencoders for the generation of physical events. This method is computationally less expensive over other traditional methods and beyond accelerating the data generation process, it can help to steer the generation and to detect anomalies.
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dee282af39824482b8165ce8053b6102 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:dee282af39824482b8165ce8053b6102 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:dee282af39824482b8165ce8053b61022021-12-02T16:51:34ZEvent generation and statistical sampling for physics with deep generative models and a density information buffer10.1038/s41467-021-22616-z2041-1723https://doaj.org/article/dee282af39824482b8165ce8053b61022021-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-22616-zhttps://doaj.org/toc/2041-1723Here, the authors report buffered-density variational autoencoders for the generation of physical events. This method is computationally less expensive over other traditional methods and beyond accelerating the data generation process, it can help to steer the generation and to detect anomalies.Sydney OttenSascha CaronWieske de SwartMelissa van BeekveldLuc HendriksCaspar van LeeuwenDamian PodareanuRoberto Ruiz de AustriRob VerheyenNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-16 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Sydney Otten Sascha Caron Wieske de Swart Melissa van Beekveld Luc Hendriks Caspar van Leeuwen Damian Podareanu Roberto Ruiz de Austri Rob Verheyen Event generation and statistical sampling for physics with deep generative models and a density information buffer |
description |
Here, the authors report buffered-density variational autoencoders for the generation of physical events. This method is computationally less expensive over other traditional methods and beyond accelerating the data generation process, it can help to steer the generation and to detect anomalies. |
format |
article |
author |
Sydney Otten Sascha Caron Wieske de Swart Melissa van Beekveld Luc Hendriks Caspar van Leeuwen Damian Podareanu Roberto Ruiz de Austri Rob Verheyen |
author_facet |
Sydney Otten Sascha Caron Wieske de Swart Melissa van Beekveld Luc Hendriks Caspar van Leeuwen Damian Podareanu Roberto Ruiz de Austri Rob Verheyen |
author_sort |
Sydney Otten |
title |
Event generation and statistical sampling for physics with deep generative models and a density information buffer |
title_short |
Event generation and statistical sampling for physics with deep generative models and a density information buffer |
title_full |
Event generation and statistical sampling for physics with deep generative models and a density information buffer |
title_fullStr |
Event generation and statistical sampling for physics with deep generative models and a density information buffer |
title_full_unstemmed |
Event generation and statistical sampling for physics with deep generative models and a density information buffer |
title_sort |
event generation and statistical sampling for physics with deep generative models and a density information buffer |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/dee282af39824482b8165ce8053b6102 |
work_keys_str_mv |
AT sydneyotten eventgenerationandstatisticalsamplingforphysicswithdeepgenerativemodelsandadensityinformationbuffer AT saschacaron eventgenerationandstatisticalsamplingforphysicswithdeepgenerativemodelsandadensityinformationbuffer AT wieskedeswart eventgenerationandstatisticalsamplingforphysicswithdeepgenerativemodelsandadensityinformationbuffer AT melissavanbeekveld eventgenerationandstatisticalsamplingforphysicswithdeepgenerativemodelsandadensityinformationbuffer AT luchendriks eventgenerationandstatisticalsamplingforphysicswithdeepgenerativemodelsandadensityinformationbuffer AT casparvanleeuwen eventgenerationandstatisticalsamplingforphysicswithdeepgenerativemodelsandadensityinformationbuffer AT damianpodareanu eventgenerationandstatisticalsamplingforphysicswithdeepgenerativemodelsandadensityinformationbuffer AT robertoruizdeaustri eventgenerationandstatisticalsamplingforphysicswithdeepgenerativemodelsandadensityinformationbuffer AT robverheyen eventgenerationandstatisticalsamplingforphysicswithdeepgenerativemodelsandadensityinformationbuffer |
_version_ |
1718382950349799424 |