Event generation and statistical sampling for physics with deep generative models and a density information buffer

Here, the authors report buffered-density variational autoencoders for the generation of physical events. This method is computationally less expensive over other traditional methods and beyond accelerating the data generation process, it can help to steer the generation and to detect anomalies.

Guardado en:
Detalles Bibliográficos
Autores principales: Sydney Otten, Sascha Caron, Wieske de Swart, Melissa van Beekveld, Luc Hendriks, Caspar van Leeuwen, Damian Podareanu, Roberto Ruiz de Austri, Rob Verheyen
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/dee282af39824482b8165ce8053b6102
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:dee282af39824482b8165ce8053b6102
record_format dspace
spelling oai:doaj.org-article:dee282af39824482b8165ce8053b61022021-12-02T16:51:34ZEvent generation and statistical sampling for physics with deep generative models and a density information buffer10.1038/s41467-021-22616-z2041-1723https://doaj.org/article/dee282af39824482b8165ce8053b61022021-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-22616-zhttps://doaj.org/toc/2041-1723Here, the authors report buffered-density variational autoencoders for the generation of physical events. This method is computationally less expensive over other traditional methods and beyond accelerating the data generation process, it can help to steer the generation and to detect anomalies.Sydney OttenSascha CaronWieske de SwartMelissa van BeekveldLuc HendriksCaspar van LeeuwenDamian PodareanuRoberto Ruiz de AustriRob VerheyenNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-16 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Sydney Otten
Sascha Caron
Wieske de Swart
Melissa van Beekveld
Luc Hendriks
Caspar van Leeuwen
Damian Podareanu
Roberto Ruiz de Austri
Rob Verheyen
Event generation and statistical sampling for physics with deep generative models and a density information buffer
description Here, the authors report buffered-density variational autoencoders for the generation of physical events. This method is computationally less expensive over other traditional methods and beyond accelerating the data generation process, it can help to steer the generation and to detect anomalies.
format article
author Sydney Otten
Sascha Caron
Wieske de Swart
Melissa van Beekveld
Luc Hendriks
Caspar van Leeuwen
Damian Podareanu
Roberto Ruiz de Austri
Rob Verheyen
author_facet Sydney Otten
Sascha Caron
Wieske de Swart
Melissa van Beekveld
Luc Hendriks
Caspar van Leeuwen
Damian Podareanu
Roberto Ruiz de Austri
Rob Verheyen
author_sort Sydney Otten
title Event generation and statistical sampling for physics with deep generative models and a density information buffer
title_short Event generation and statistical sampling for physics with deep generative models and a density information buffer
title_full Event generation and statistical sampling for physics with deep generative models and a density information buffer
title_fullStr Event generation and statistical sampling for physics with deep generative models and a density information buffer
title_full_unstemmed Event generation and statistical sampling for physics with deep generative models and a density information buffer
title_sort event generation and statistical sampling for physics with deep generative models and a density information buffer
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/dee282af39824482b8165ce8053b6102
work_keys_str_mv AT sydneyotten eventgenerationandstatisticalsamplingforphysicswithdeepgenerativemodelsandadensityinformationbuffer
AT saschacaron eventgenerationandstatisticalsamplingforphysicswithdeepgenerativemodelsandadensityinformationbuffer
AT wieskedeswart eventgenerationandstatisticalsamplingforphysicswithdeepgenerativemodelsandadensityinformationbuffer
AT melissavanbeekveld eventgenerationandstatisticalsamplingforphysicswithdeepgenerativemodelsandadensityinformationbuffer
AT luchendriks eventgenerationandstatisticalsamplingforphysicswithdeepgenerativemodelsandadensityinformationbuffer
AT casparvanleeuwen eventgenerationandstatisticalsamplingforphysicswithdeepgenerativemodelsandadensityinformationbuffer
AT damianpodareanu eventgenerationandstatisticalsamplingforphysicswithdeepgenerativemodelsandadensityinformationbuffer
AT robertoruizdeaustri eventgenerationandstatisticalsamplingforphysicswithdeepgenerativemodelsandadensityinformationbuffer
AT robverheyen eventgenerationandstatisticalsamplingforphysicswithdeepgenerativemodelsandadensityinformationbuffer
_version_ 1718382950349799424