Event generation and statistical sampling for physics with deep generative models and a density information buffer

Here, the authors report buffered-density variational autoencoders for the generation of physical events. This method is computationally less expensive over other traditional methods and beyond accelerating the data generation process, it can help to steer the generation and to detect anomalies.

Guardado en:
Detalles Bibliográficos
Autores principales: Sydney Otten, Sascha Caron, Wieske de Swart, Melissa van Beekveld, Luc Hendriks, Caspar van Leeuwen, Damian Podareanu, Roberto Ruiz de Austri, Rob Verheyen
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/dee282af39824482b8165ce8053b6102
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares