Event generation and statistical sampling for physics with deep generative models and a density information buffer
Here, the authors report buffered-density variational autoencoders for the generation of physical events. This method is computationally less expensive over other traditional methods and beyond accelerating the data generation process, it can help to steer the generation and to detect anomalies.
Guardado en:
Autores principales: | Sydney Otten, Sascha Caron, Wieske de Swart, Melissa van Beekveld, Luc Hendriks, Caspar van Leeuwen, Damian Podareanu, Roberto Ruiz de Austri, Rob Verheyen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/dee282af39824482b8165ce8053b6102 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Free Radical Generation in Far-UV Synchrotron Radiation Circular Dichroism Assays—Protein and Buffer Composition Contribution
por: Paolo Ruzza, et al.
Publicado: (2021) -
Role of the eastern boundary-generated waves on the termination of 1997 Indian Ocean Dipole event
por: Iskhaq Iskandar, et al.
Publicado: (2021) -
Integrated turbine-generators for hydropower plant – a review
por: Liszka Damian, et al.
Publicado: (2021) -
Estimating the success of re-identifications in incomplete datasets using generative models
por: Luc Rocher, et al.
Publicado: (2019) -
Seagrass Posidonia is impaired by human-generated noise
por: Marta Solé, et al.
Publicado: (2021)