Development of a hyperparameter optimization method for recommendatory models based on matrix factorization
Many advanced recommendatory models are implemented using matrix factorization algorithms. Experiments show that the quality of their performance depends significantly on the selected hyperparameters. Analysis of the effectiveness of using various methods for solving this problem of optimizing hyper...
Guardado en:
Autores principales: | Alexander Nechaev, Vasily Meltsov, Dmitry Strabykin |
---|---|
Formato: | article |
Lenguaje: | EN RU UK |
Publicado: |
PC Technology Center
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/deec9da69c3948b888fcd52ab029a4b2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Cover & Preface JOSI 20(1) 2021
por: Hilma Raimona Zadry
Publicado: (2021) -
Determinants of E-commerce Adoption on Business Performance: A Study of MSMEs in Malang City, Indonesia
por: Abu Muna Almaududi Ausat, et al.
Publicado: (2021) -
Spare Parts Supplier Selection Design: A Case Study of A Railway Company
por: Robby Ady Asmara, et al.
Publicado: (2021) -
Development of prediction model of steel fiber-reinforced concrete compressive strength using random forest algorithm combined with hyperparameter tuning and k-fold cross-validation
por: Nadia Moneem Al-Abdaly, et al.
Publicado: (2021) -
Determination of optimal conditions for processing oil bottom sediments using electrohydraulic effect
por: Amangeldy Satybaldin, et al.
Publicado: (2021)