Hypoxic–ischemic injury causes functional and structural neurovascular degeneration in the juvenile mouse retina
Abstract Ischemic stroke is a major cause of long-term disabilities, including vision loss. Neuronal and blood vessel maturation can affect the susceptibility of and outcome after ischemic stroke. Although we recently reported that exposure of neonatal mice to hypoxia–ischemia (HI) severely compromi...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/defc15708d154c2694a7566ad8ecf618 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:defc15708d154c2694a7566ad8ecf618 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:defc15708d154c2694a7566ad8ecf6182021-12-02T17:24:22ZHypoxic–ischemic injury causes functional and structural neurovascular degeneration in the juvenile mouse retina10.1038/s41598-021-90447-52045-2322https://doaj.org/article/defc15708d154c2694a7566ad8ecf6182021-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-90447-5https://doaj.org/toc/2045-2322Abstract Ischemic stroke is a major cause of long-term disabilities, including vision loss. Neuronal and blood vessel maturation can affect the susceptibility of and outcome after ischemic stroke. Although we recently reported that exposure of neonatal mice to hypoxia–ischemia (HI) severely compromises the integrity of the retinal neurovasculature, it is not known whether juvenile mice are similarly impacted. Here we examined the effect of HI injury in juvenile mice on retinal structure and function, in particular the susceptibility of retinal neurons and blood vessels to HI damage. Our studies demonstrated that the retina suffered from functional and structural injuries, including reduced b-wave, thinning of the inner retinal layers, macroglial remodeling, and deterioration of the vasculature. The degeneration of the retinal vasculature associated with HI resulted in a significant decrease in the numbers of pericytes and endothelial cells as well as an increase in capillary loss. Taken together, these findings suggest a need for juveniles suffering from ischemic stroke to be monitored for changes in retinal functional and structural integrity. Thus, there is an emergent need for developing therapeutic approaches to prevent and reverse retinal neurovascular dysfunction with exposure to ischemic stroke.Ismail S. ZaitounPawan K. ShahiAndrew SuschaKore ChanGillian J. McLellanBikash R. PattnaikChristine M. SorensonNader SheibaniNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-13 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Ismail S. Zaitoun Pawan K. Shahi Andrew Suscha Kore Chan Gillian J. McLellan Bikash R. Pattnaik Christine M. Sorenson Nader Sheibani Hypoxic–ischemic injury causes functional and structural neurovascular degeneration in the juvenile mouse retina |
description |
Abstract Ischemic stroke is a major cause of long-term disabilities, including vision loss. Neuronal and blood vessel maturation can affect the susceptibility of and outcome after ischemic stroke. Although we recently reported that exposure of neonatal mice to hypoxia–ischemia (HI) severely compromises the integrity of the retinal neurovasculature, it is not known whether juvenile mice are similarly impacted. Here we examined the effect of HI injury in juvenile mice on retinal structure and function, in particular the susceptibility of retinal neurons and blood vessels to HI damage. Our studies demonstrated that the retina suffered from functional and structural injuries, including reduced b-wave, thinning of the inner retinal layers, macroglial remodeling, and deterioration of the vasculature. The degeneration of the retinal vasculature associated with HI resulted in a significant decrease in the numbers of pericytes and endothelial cells as well as an increase in capillary loss. Taken together, these findings suggest a need for juveniles suffering from ischemic stroke to be monitored for changes in retinal functional and structural integrity. Thus, there is an emergent need for developing therapeutic approaches to prevent and reverse retinal neurovascular dysfunction with exposure to ischemic stroke. |
format |
article |
author |
Ismail S. Zaitoun Pawan K. Shahi Andrew Suscha Kore Chan Gillian J. McLellan Bikash R. Pattnaik Christine M. Sorenson Nader Sheibani |
author_facet |
Ismail S. Zaitoun Pawan K. Shahi Andrew Suscha Kore Chan Gillian J. McLellan Bikash R. Pattnaik Christine M. Sorenson Nader Sheibani |
author_sort |
Ismail S. Zaitoun |
title |
Hypoxic–ischemic injury causes functional and structural neurovascular degeneration in the juvenile mouse retina |
title_short |
Hypoxic–ischemic injury causes functional and structural neurovascular degeneration in the juvenile mouse retina |
title_full |
Hypoxic–ischemic injury causes functional and structural neurovascular degeneration in the juvenile mouse retina |
title_fullStr |
Hypoxic–ischemic injury causes functional and structural neurovascular degeneration in the juvenile mouse retina |
title_full_unstemmed |
Hypoxic–ischemic injury causes functional and structural neurovascular degeneration in the juvenile mouse retina |
title_sort |
hypoxic–ischemic injury causes functional and structural neurovascular degeneration in the juvenile mouse retina |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/defc15708d154c2694a7566ad8ecf618 |
work_keys_str_mv |
AT ismailszaitoun hypoxicischemicinjurycausesfunctionalandstructuralneurovasculardegenerationinthejuvenilemouseretina AT pawankshahi hypoxicischemicinjurycausesfunctionalandstructuralneurovasculardegenerationinthejuvenilemouseretina AT andrewsuscha hypoxicischemicinjurycausesfunctionalandstructuralneurovasculardegenerationinthejuvenilemouseretina AT korechan hypoxicischemicinjurycausesfunctionalandstructuralneurovasculardegenerationinthejuvenilemouseretina AT gillianjmclellan hypoxicischemicinjurycausesfunctionalandstructuralneurovasculardegenerationinthejuvenilemouseretina AT bikashrpattnaik hypoxicischemicinjurycausesfunctionalandstructuralneurovasculardegenerationinthejuvenilemouseretina AT christinemsorenson hypoxicischemicinjurycausesfunctionalandstructuralneurovasculardegenerationinthejuvenilemouseretina AT nadersheibani hypoxicischemicinjurycausesfunctionalandstructuralneurovasculardegenerationinthejuvenilemouseretina |
_version_ |
1718380938933567488 |