The Role of Mesoscale Plasma Sheet Dynamics in Ring Current Formation

During geomagnetically active periods ions are transported from the magnetotail into the inner magnetosphere and accelerated to energies of tens to hundreds of keV. These energetic ions, of mixed composition with the most important species being H+ and O+, become the dominant source of plasma pressu...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: K. A. Sorathia, A. Michael, V.G. Merkin, A.Y. Ukhorskiy, D. L. Turner, J.G. Lyon, J. Garretson, M. Gkioulidou , F.R. Toffoletto
Formato: article
Lenguaje:EN
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://doaj.org/article/defcb15cee294a3d9580290a46367e55
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:defcb15cee294a3d9580290a46367e55
record_format dspace
spelling oai:doaj.org-article:defcb15cee294a3d9580290a46367e552021-12-02T17:50:55ZThe Role of Mesoscale Plasma Sheet Dynamics in Ring Current Formation2296-987X10.3389/fspas.2021.761875https://doaj.org/article/defcb15cee294a3d9580290a46367e552021-11-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fspas.2021.761875/fullhttps://doaj.org/toc/2296-987XDuring geomagnetically active periods ions are transported from the magnetotail into the inner magnetosphere and accelerated to energies of tens to hundreds of keV. These energetic ions, of mixed composition with the most important species being H+ and O+, become the dominant source of plasma pressure in the inner magnetosphere. Ion transport and acceleration can occur at different spatial and temporal scales ranging from global quasi-steady convection to localized impulsive injection events and may depend on the ion gyroradius. In this study we ascertain the relative importance of mesoscale flow structures and the effects of ion non-adiabaticity on the produced ring current. For this we use: global magnetohydrodynamic (MHD) simulations to generate self-consistent electromagnetic fields under typical driving conditions which exhibit bursty bulk flows (BBFs); and injected test particles, initialized to match the plasma moments of the MHD simulation, and subsequently evolved according to the kinetic equations of motion. We show that the BBFs produced by our simulation reproduce thermodynamic and magnetic statistics from in situ measurements and are numerically robust. Mining the simulation data we create a data set, over a billion points, connecting particle transport to characteristics of the MHD flow. From this we show that mesoscale bubbles, localized depleted entropy regions, and particle gradient drifts are critical for ion transport. Finally we show, using identical particle ensembles with varying mass, that O+ non-adiabaticity creates qualitative differences in energization and spatial distribution while H+ non-adiabaticity has non-negligible implications for loss timescales.K. A. SorathiaA. MichaelV.G. MerkinA.Y. UkhorskiyD. L. TurnerJ.G. LyonJ. GarretsonM. Gkioulidou F.R. ToffolettoFrontiers Media S.A.articleplasma sheetring currentbuoyancymesoscalebursty bulk flowsinjectionsAstronomyQB1-991Geophysics. Cosmic physicsQC801-809ENFrontiers in Astronomy and Space Sciences, Vol 8 (2021)
institution DOAJ
collection DOAJ
language EN
topic plasma sheet
ring current
buoyancy
mesoscale
bursty bulk flows
injections
Astronomy
QB1-991
Geophysics. Cosmic physics
QC801-809
spellingShingle plasma sheet
ring current
buoyancy
mesoscale
bursty bulk flows
injections
Astronomy
QB1-991
Geophysics. Cosmic physics
QC801-809
K. A. Sorathia
A. Michael
V.G. Merkin
A.Y. Ukhorskiy
D. L. Turner
J.G. Lyon
J. Garretson
M. Gkioulidou 
F.R. Toffoletto
The Role of Mesoscale Plasma Sheet Dynamics in Ring Current Formation
description During geomagnetically active periods ions are transported from the magnetotail into the inner magnetosphere and accelerated to energies of tens to hundreds of keV. These energetic ions, of mixed composition with the most important species being H+ and O+, become the dominant source of plasma pressure in the inner magnetosphere. Ion transport and acceleration can occur at different spatial and temporal scales ranging from global quasi-steady convection to localized impulsive injection events and may depend on the ion gyroradius. In this study we ascertain the relative importance of mesoscale flow structures and the effects of ion non-adiabaticity on the produced ring current. For this we use: global magnetohydrodynamic (MHD) simulations to generate self-consistent electromagnetic fields under typical driving conditions which exhibit bursty bulk flows (BBFs); and injected test particles, initialized to match the plasma moments of the MHD simulation, and subsequently evolved according to the kinetic equations of motion. We show that the BBFs produced by our simulation reproduce thermodynamic and magnetic statistics from in situ measurements and are numerically robust. Mining the simulation data we create a data set, over a billion points, connecting particle transport to characteristics of the MHD flow. From this we show that mesoscale bubbles, localized depleted entropy regions, and particle gradient drifts are critical for ion transport. Finally we show, using identical particle ensembles with varying mass, that O+ non-adiabaticity creates qualitative differences in energization and spatial distribution while H+ non-adiabaticity has non-negligible implications for loss timescales.
format article
author K. A. Sorathia
A. Michael
V.G. Merkin
A.Y. Ukhorskiy
D. L. Turner
J.G. Lyon
J. Garretson
M. Gkioulidou 
F.R. Toffoletto
author_facet K. A. Sorathia
A. Michael
V.G. Merkin
A.Y. Ukhorskiy
D. L. Turner
J.G. Lyon
J. Garretson
M. Gkioulidou 
F.R. Toffoletto
author_sort K. A. Sorathia
title The Role of Mesoscale Plasma Sheet Dynamics in Ring Current Formation
title_short The Role of Mesoscale Plasma Sheet Dynamics in Ring Current Formation
title_full The Role of Mesoscale Plasma Sheet Dynamics in Ring Current Formation
title_fullStr The Role of Mesoscale Plasma Sheet Dynamics in Ring Current Formation
title_full_unstemmed The Role of Mesoscale Plasma Sheet Dynamics in Ring Current Formation
title_sort role of mesoscale plasma sheet dynamics in ring current formation
publisher Frontiers Media S.A.
publishDate 2021
url https://doaj.org/article/defcb15cee294a3d9580290a46367e55
work_keys_str_mv AT kasorathia theroleofmesoscaleplasmasheetdynamicsinringcurrentformation
AT amichael theroleofmesoscaleplasmasheetdynamicsinringcurrentformation
AT vgmerkin theroleofmesoscaleplasmasheetdynamicsinringcurrentformation
AT ayukhorskiy theroleofmesoscaleplasmasheetdynamicsinringcurrentformation
AT dlturner theroleofmesoscaleplasmasheetdynamicsinringcurrentformation
AT jglyon theroleofmesoscaleplasmasheetdynamicsinringcurrentformation
AT jgarretson theroleofmesoscaleplasmasheetdynamicsinringcurrentformation
AT mgkioulidou theroleofmesoscaleplasmasheetdynamicsinringcurrentformation
AT frtoffoletto theroleofmesoscaleplasmasheetdynamicsinringcurrentformation
AT kasorathia roleofmesoscaleplasmasheetdynamicsinringcurrentformation
AT amichael roleofmesoscaleplasmasheetdynamicsinringcurrentformation
AT vgmerkin roleofmesoscaleplasmasheetdynamicsinringcurrentformation
AT ayukhorskiy roleofmesoscaleplasmasheetdynamicsinringcurrentformation
AT dlturner roleofmesoscaleplasmasheetdynamicsinringcurrentformation
AT jglyon roleofmesoscaleplasmasheetdynamicsinringcurrentformation
AT jgarretson roleofmesoscaleplasmasheetdynamicsinringcurrentformation
AT mgkioulidou roleofmesoscaleplasmasheetdynamicsinringcurrentformation
AT frtoffoletto roleofmesoscaleplasmasheetdynamicsinringcurrentformation
_version_ 1718379319505453056