An SHO-based approach to timetable scheduling: a case study
University timetable scheduling, which is a typical problem that all universities around the world have to face every semester, is an NP-hard problem. It is the task of allocating the right timeslots and classrooms for various courses by taking into account predefined constraints. In the current lit...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Taylor & Francis Group
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/df00f828994c4a6986b4d82cbcdd82e1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | University timetable scheduling, which is a typical problem that all universities around the world have to face every semester, is an NP-hard problem. It is the task of allocating the right timeslots and classrooms for various courses by taking into account predefined constraints. In the current literature, many approaches have been proposed to find feasible timetables. Among others, swarm-based algorithms are promising candidates because of their effectiveness and flexibility. This paper investigates proposing an approach to university timetable scheduling using a recent novel swarm-based algorithm named Spotted Hyena Optimizer (SHO) which is inspired by the hunting behaviour of spotted hyenas. Then, a combination of SA and SHO algorithms also investigated to improve the overall performance of the proposed method. We also illustrate the proposed method on a real-world university timetabling problem in Vietnam. Experimental results have indicated the efficiency of the proposed method in comparison to other competitive metaheuristic algorithm such as PSO algorithm in finding feasible timetables. |
---|