A cautionary tale for machine learning generated configurations in presence of a conserved quantity

Abstract We investigate the performance of machine learning algorithms trained exclusively with configurations obtained from importance sampling Monte Carlo simulations of the two-dimensional Ising model with conserved magnetization. For supervised machine learning, we use convolutional neural netwo...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ahmadreza Azizi, Michel Pleimling
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/df1580ca436345bc98dcc70bfc4d5ba2
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract We investigate the performance of machine learning algorithms trained exclusively with configurations obtained from importance sampling Monte Carlo simulations of the two-dimensional Ising model with conserved magnetization. For supervised machine learning, we use convolutional neural networks and find that the corresponding output not only allows to locate the phase transition point with high precision, it also displays a finite-size scaling characterized by an Ising critical exponent. For unsupervised learning, restricted Boltzmann machines (RBM) are trained to generate new configurations that are then used to compute various quantities. We find that RBM generates configurations with magnetizations and energies forbidden in the original physical system. The RBM generated configurations result in energy density probability distributions with incorrect weights as well as in wrong spatial correlations. We show that shortcomings are also encountered when training RBM with configurations obtained from the non-conserved Ising model.