A cautionary tale for machine learning generated configurations in presence of a conserved quantity
Abstract We investigate the performance of machine learning algorithms trained exclusively with configurations obtained from importance sampling Monte Carlo simulations of the two-dimensional Ising model with conserved magnetization. For supervised machine learning, we use convolutional neural netwo...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/df1580ca436345bc98dcc70bfc4d5ba2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|