A cautionary tale for machine learning generated configurations in presence of a conserved quantity
Abstract We investigate the performance of machine learning algorithms trained exclusively with configurations obtained from importance sampling Monte Carlo simulations of the two-dimensional Ising model with conserved magnetization. For supervised machine learning, we use convolutional neural netwo...
Guardado en:
Autores principales: | Ahmadreza Azizi, Michel Pleimling |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/df1580ca436345bc98dcc70bfc4d5ba2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Cautionary Tales: Ethics and Case Studies in Science
por: Clyde Freeman Herreid
Publicado: (2014) -
Nurture might be nature: cautionary tales and proposed solutions
por: Sara A. Hart, et al.
Publicado: (2021) -
Fructose-induced severe hypertriglyceridemia and diabetes mellitus: a cautionary tale
por: Ana Dugic, et al.
Publicado: (2021) -
A cautionary tale about using the apparent carbon accumulation rate (aCAR) obtained from peat cores
por: Dylan M. Young, et al.
Publicado: (2021) -
A Cautionary Tale: Tn<italic toggle="yes">903 aph</italic>, Kanamycin Resistance Redux in the Environment
por: Vivian P. W. Miao
Publicado: (2017)