Unsupervised Segmentation of Greenhouse Plant Images Based on Statistical Method
Abstract Complicated image scene of the agricultural greenhouse plant images makes it very difficult to obtain precise manual labeling, leading to the hardship of getting the accurate training set of the conditional random field (CRF). Considering this problem, this paper proposed an unsupervised co...
Guardado en:
Autores principales: | Ping Zhang, Lihong Xu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/df18495121a34fe3b339323b7099a290 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Tree Crowns Segmentation and Classification in Overlapping Orchards Based on Satellite Images and Unsupervised Learning Algorithms
por: Abdellatif Moussaid, et al.
Publicado: (2021) -
Author Correction: Unsupervised microstructure segmentation by mimicking metallurgists’ approach to pattern recognition
por: Hoheok Kim, et al.
Publicado: (2021) -
A weighted region-based level set method for image segmentation with intensity inhomogeneity.
por: Haiping Yu, et al.
Publicado: (2021) -
Unsupervised Domain Adaptation Network With Category-Centric Prototype Aligner for Biomedical Image Segmentation
por: Ping Gong, et al.
Publicado: (2021) -
Real-Time Cerebral Vessel Segmentation in Laser Speckle Contrast Image Based on Unsupervised Domain Adaptation
por: Heping Chen, et al.
Publicado: (2021)