An electrically switchable wideband metamaterial absorber based on graphene at P band
Graphene has the capability of dynamically tuning its conductivity through gate voltage. Based on this fact, an electrically switchable wideband metamaterial absorber at low frequencies is presented and investigated in this paper. Our calculated results show that its absorption is over 90% from 400...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/df1db8f823494b4c9113ed984cff8833 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:df1db8f823494b4c9113ed984cff8833 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:df1db8f823494b4c9113ed984cff88332021-12-05T14:11:02ZAn electrically switchable wideband metamaterial absorber based on graphene at P band2391-547110.1515/phys-2021-0056https://doaj.org/article/df1db8f823494b4c9113ed984cff88332021-08-01T00:00:00Zhttps://doi.org/10.1515/phys-2021-0056https://doaj.org/toc/2391-5471Graphene has the capability of dynamically tuning its conductivity through gate voltage. Based on this fact, an electrically switchable wideband metamaterial absorber at low frequencies is presented and investigated in this paper. Our calculated results show that its absorption is over 90% from 400 to 1,000 MHz with the Fermi level of graphene being at 0 eV and the absorption band can be switched by adjusting the Fermi level of graphene without changing its physical structure. Moreover, the surface current distribution enables us to reveal the switchable wideband absorption characteristics of our designed metamaterial absorber. At last, we prove that its absorption property is polarization-insensitive due to the rotational symmetry of the structural unit. This work may provide a further step in the development of switchable sensors and absorbers at low frequencies.Wang LianshengXia DongyanFu QuanhongDing XueyongWang YuanDe Gruyterarticlemetamaterial absorbergrapheneswitchablewidebandlow frequencyPhysicsQC1-999ENOpen Physics, Vol 19, Iss 1, Pp 460-466 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
metamaterial absorber graphene switchable wideband low frequency Physics QC1-999 |
spellingShingle |
metamaterial absorber graphene switchable wideband low frequency Physics QC1-999 Wang Liansheng Xia Dongyan Fu Quanhong Ding Xueyong Wang Yuan An electrically switchable wideband metamaterial absorber based on graphene at P band |
description |
Graphene has the capability of dynamically tuning its conductivity through gate voltage. Based on this fact, an electrically switchable wideband metamaterial absorber at low frequencies is presented and investigated in this paper. Our calculated results show that its absorption is over 90% from 400 to 1,000 MHz with the Fermi level of graphene being at 0 eV and the absorption band can be switched by adjusting the Fermi level of graphene without changing its physical structure. Moreover, the surface current distribution enables us to reveal the switchable wideband absorption characteristics of our designed metamaterial absorber. At last, we prove that its absorption property is polarization-insensitive due to the rotational symmetry of the structural unit. This work may provide a further step in the development of switchable sensors and absorbers at low frequencies. |
format |
article |
author |
Wang Liansheng Xia Dongyan Fu Quanhong Ding Xueyong Wang Yuan |
author_facet |
Wang Liansheng Xia Dongyan Fu Quanhong Ding Xueyong Wang Yuan |
author_sort |
Wang Liansheng |
title |
An electrically switchable wideband metamaterial absorber based on graphene at P band |
title_short |
An electrically switchable wideband metamaterial absorber based on graphene at P band |
title_full |
An electrically switchable wideband metamaterial absorber based on graphene at P band |
title_fullStr |
An electrically switchable wideband metamaterial absorber based on graphene at P band |
title_full_unstemmed |
An electrically switchable wideband metamaterial absorber based on graphene at P band |
title_sort |
electrically switchable wideband metamaterial absorber based on graphene at p band |
publisher |
De Gruyter |
publishDate |
2021 |
url |
https://doaj.org/article/df1db8f823494b4c9113ed984cff8833 |
work_keys_str_mv |
AT wangliansheng anelectricallyswitchablewidebandmetamaterialabsorberbasedongrapheneatpband AT xiadongyan anelectricallyswitchablewidebandmetamaterialabsorberbasedongrapheneatpband AT fuquanhong anelectricallyswitchablewidebandmetamaterialabsorberbasedongrapheneatpband AT dingxueyong anelectricallyswitchablewidebandmetamaterialabsorberbasedongrapheneatpband AT wangyuan anelectricallyswitchablewidebandmetamaterialabsorberbasedongrapheneatpband AT wangliansheng electricallyswitchablewidebandmetamaterialabsorberbasedongrapheneatpband AT xiadongyan electricallyswitchablewidebandmetamaterialabsorberbasedongrapheneatpband AT fuquanhong electricallyswitchablewidebandmetamaterialabsorberbasedongrapheneatpband AT dingxueyong electricallyswitchablewidebandmetamaterialabsorberbasedongrapheneatpband AT wangyuan electricallyswitchablewidebandmetamaterialabsorberbasedongrapheneatpband |
_version_ |
1718371448730419200 |