Handling Imbalanced Datasets for Robust Deep Neural Network-Based Fault Detection in Manufacturing Systems
Over the recent years, Industry 4.0 (I4.0) technologies such as the Industrial Internet of Things (IIoT), Artificial Intelligence (AI), and the presence of Industrial Big Data (IBD) have helped achieve intelligent Fault Detection (FD) in manufacturing. Notably, data-driven approaches in FD apply Dee...
Guardado en:
Autores principales: | Jefkine Kafunah, Muhammad Intizar Ali, John G. Breslin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/df2717f2ba0d4f4b9e166c8410039dc0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Novel Oversampling Method for Imbalanced Datasets Based on Density Peaks Clustering
por: Jie Cao*, et al.
Publicado: (2021) -
TWO-WAY METRIC LEARNING WITH MAJORITY AND MINORITY SUBSETS FOR CLASSIFICATION OF LARGE EXTREMELY IMBALANCED FACE DATASET
por: Ashu Kaushik, et al.
Publicado: (2021) -
Boosting-GNN: Boosting Algorithm for Graph Networks on Imbalanced Node Classification
por: Shuhao Shi, et al.
Publicado: (2021) -
Assembly Quality Detection Based on Class-Imbalanced Semi-Supervised Learning
por: Zichen Lu, et al.
Publicado: (2021) -
Comparison of Resampling Techniques for Imbalanced Datasets in Machine Learning: Application to Epileptogenic Zone Localization From Interictal Intracranial EEG Recordings in Patients With Focal Epilepsy
por: Giulia Varotto, et al.
Publicado: (2021)