ADAM10 and ADAM17 regulate EGFR, c-Met and TNF RI signalling in liver regeneration and fibrosis
Abstract ADAM10 and ADAM17 are proteases that affect multiple signalling pathways by releasing molecules from the cell surface. As their substrate specificities partially overlaps, we investigated their concurrent role in liver regeneration and fibrosis, using three liver-specific deficient mouse li...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/df2cddcbdde34b69ae1e9c24d053e8ad |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:df2cddcbdde34b69ae1e9c24d053e8ad |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:df2cddcbdde34b69ae1e9c24d053e8ad2021-12-02T17:51:21ZADAM10 and ADAM17 regulate EGFR, c-Met and TNF RI signalling in liver regeneration and fibrosis10.1038/s41598-021-90716-32045-2322https://doaj.org/article/df2cddcbdde34b69ae1e9c24d053e8ad2021-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-90716-3https://doaj.org/toc/2045-2322Abstract ADAM10 and ADAM17 are proteases that affect multiple signalling pathways by releasing molecules from the cell surface. As their substrate specificities partially overlaps, we investigated their concurrent role in liver regeneration and fibrosis, using three liver-specific deficient mouse lines: ADAM10- and ADAM17-deficient lines, and a line deficient for both proteases. In the model of partial hepatectomy, double deficient mice exhibited decreased AKT phosphorylation, decreased release of EGFR activating factors and lower shedding of HGF receptor c-Met. Thus, simultaneous ablation of ADAM10 and ADAM17 resulted in inhibited EGFR signalling, while HGF/c-Met signalling pathway was enhanced. In contrast, antagonistic effects of ADAM10 and ADAM17 were observed in the model of chronic CCl4 intoxication. While ADAM10-deficient mice develop more severe fibrosis manifested by high ALT, AST, ALP and higher collagen deposition, combined deficiency of ADAM10 and ADAM17 surprisingly results in comparable degree of liver damage as in control littermates. Therefore, ADAM17 deficiency is not protective in fibrosis development per se, but can ameliorate the damaging effect of ADAM10 deficiency on liver fibrosis development. Furthermore, we show that while ablation of ADAM17 resulted in decreased shedding of TNF RI, ADAM10 deficiency leads to increased levels of soluble TNF RI in serum. In conclusion, hepatocyte-derived ADAM10 and ADAM17 are important regulators of growth receptor signalling and TNF RI release, and pathological roles of these proteases are dependent on the cellular context.Olga ZbodakovaKarel ChalupskyLenka SarnovaPetr KasparekMarketa JirouskovaMartin GregorRadislav SedlacekNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-14 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Olga Zbodakova Karel Chalupsky Lenka Sarnova Petr Kasparek Marketa Jirouskova Martin Gregor Radislav Sedlacek ADAM10 and ADAM17 regulate EGFR, c-Met and TNF RI signalling in liver regeneration and fibrosis |
description |
Abstract ADAM10 and ADAM17 are proteases that affect multiple signalling pathways by releasing molecules from the cell surface. As their substrate specificities partially overlaps, we investigated their concurrent role in liver regeneration and fibrosis, using three liver-specific deficient mouse lines: ADAM10- and ADAM17-deficient lines, and a line deficient for both proteases. In the model of partial hepatectomy, double deficient mice exhibited decreased AKT phosphorylation, decreased release of EGFR activating factors and lower shedding of HGF receptor c-Met. Thus, simultaneous ablation of ADAM10 and ADAM17 resulted in inhibited EGFR signalling, while HGF/c-Met signalling pathway was enhanced. In contrast, antagonistic effects of ADAM10 and ADAM17 were observed in the model of chronic CCl4 intoxication. While ADAM10-deficient mice develop more severe fibrosis manifested by high ALT, AST, ALP and higher collagen deposition, combined deficiency of ADAM10 and ADAM17 surprisingly results in comparable degree of liver damage as in control littermates. Therefore, ADAM17 deficiency is not protective in fibrosis development per se, but can ameliorate the damaging effect of ADAM10 deficiency on liver fibrosis development. Furthermore, we show that while ablation of ADAM17 resulted in decreased shedding of TNF RI, ADAM10 deficiency leads to increased levels of soluble TNF RI in serum. In conclusion, hepatocyte-derived ADAM10 and ADAM17 are important regulators of growth receptor signalling and TNF RI release, and pathological roles of these proteases are dependent on the cellular context. |
format |
article |
author |
Olga Zbodakova Karel Chalupsky Lenka Sarnova Petr Kasparek Marketa Jirouskova Martin Gregor Radislav Sedlacek |
author_facet |
Olga Zbodakova Karel Chalupsky Lenka Sarnova Petr Kasparek Marketa Jirouskova Martin Gregor Radislav Sedlacek |
author_sort |
Olga Zbodakova |
title |
ADAM10 and ADAM17 regulate EGFR, c-Met and TNF RI signalling in liver regeneration and fibrosis |
title_short |
ADAM10 and ADAM17 regulate EGFR, c-Met and TNF RI signalling in liver regeneration and fibrosis |
title_full |
ADAM10 and ADAM17 regulate EGFR, c-Met and TNF RI signalling in liver regeneration and fibrosis |
title_fullStr |
ADAM10 and ADAM17 regulate EGFR, c-Met and TNF RI signalling in liver regeneration and fibrosis |
title_full_unstemmed |
ADAM10 and ADAM17 regulate EGFR, c-Met and TNF RI signalling in liver regeneration and fibrosis |
title_sort |
adam10 and adam17 regulate egfr, c-met and tnf ri signalling in liver regeneration and fibrosis |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/df2cddcbdde34b69ae1e9c24d053e8ad |
work_keys_str_mv |
AT olgazbodakova adam10andadam17regulateegfrcmetandtnfrisignallinginliverregenerationandfibrosis AT karelchalupsky adam10andadam17regulateegfrcmetandtnfrisignallinginliverregenerationandfibrosis AT lenkasarnova adam10andadam17regulateegfrcmetandtnfrisignallinginliverregenerationandfibrosis AT petrkasparek adam10andadam17regulateegfrcmetandtnfrisignallinginliverregenerationandfibrosis AT marketajirouskova adam10andadam17regulateegfrcmetandtnfrisignallinginliverregenerationandfibrosis AT martingregor adam10andadam17regulateegfrcmetandtnfrisignallinginliverregenerationandfibrosis AT radislavsedlacek adam10andadam17regulateegfrcmetandtnfrisignallinginliverregenerationandfibrosis |
_version_ |
1718379257392005120 |