Numerical Study on Strengthening of Weak One-Way Slabs with HSC Laminates Subjected to Blast Load

High-performance reinforcement concrete due to its ductility and higher energy absorption has many applications in the field of passive defence than the normal concrete. These high-performance materials can be used in many cases, such as seismic improvement of building members. In some cases the str...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Fereydoon Omidinasab, Mohammad Afrooznia
Formato: article
Lenguaje:FA
Publicado: Iranian Society of Structrual Engineering (ISSE) 2021
Materias:
Acceso en línea:https://doaj.org/article/df3df8c3a672481a98c96ce71281643a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:High-performance reinforcement concrete due to its ductility and higher energy absorption has many applications in the field of passive defence than the normal concrete. These high-performance materials can be used in many cases, such as seismic improvement of building members. In some cases the structural capacity is increased, which is called strengthening. Strengthening can be carried out by increasing the toughness and increase of resistance. In this study, the use of Explosion Proof concrete in order to protect the structural components (in this study: Weak-one Slabs). In this paper, four weak-one way slab that were strangled in various zones have been studied. The numerical modelling is proceeding in Abaqus / explicit. For modelling the behaviour of concrete, CDMP method has been used. The results of this study show that the energy absorption in the strengthened slab in the tense region has increased to seven times compare to other zone of strengthening. The use of fiber reinforced concrete has a significant effect on the increase of bearing capacity and the ductility of a one-way slab. In other words, the use of high-performance fiber reinforced concrete as a method for the strengthening of structural elements such as slabs will be effective in improving the behaviour of them, especially in the field of passive defence. Also, the maximum tolerable explosive load in compression, tensile and compression-tensile strengthed zone specimens was 1.3, 0.85 and 1.21 times compare with the reference specimen. The results of this study show that the use of high-performance fiber concrete laminates in all zones of the slab simultaneously, increase stiffness and reduce the deflection of the specimen.