Optimizing Few-Shot Learning Based on Variational Autoencoders

Despite the importance of few-shot learning, the lack of labeled training data in the real world makes it extremely challenging for existing machine learning methods because this limited dataset does not well represent the data variance. In this research, we suggest employing a generative approach u...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Ruoqi Wei, Ausif Mahmood
Format: article
Langue:EN
Publié: MDPI AG 2021
Sujets:
Q
Accès en ligne:https://doaj.org/article/df412ec1c61f467f80127d304633eb2e
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!