Optimizing Few-Shot Learning Based on Variational Autoencoders
Despite the importance of few-shot learning, the lack of labeled training data in the real world makes it extremely challenging for existing machine learning methods because this limited dataset does not well represent the data variance. In this research, we suggest employing a generative approach u...
Enregistré dans:
Auteurs principaux: | Ruoqi Wei, Ausif Mahmood |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/df412ec1c61f467f80127d304633eb2e |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Automated Muzzle Detection and Biometric Identification via Few-Shot Deep Transfer Learning of Mixed Breed Cattle
par: Ali Shojaeipour, et autres
Publié: (2021) -
A Manifold Learning Perspective on Representation Learning: Learning Decoder and Representations without an Encoder
par: Viktoria Schuster, et autres
Publié: (2021) -
Few-Shot Object Detection via Sample Processing
par: Honghui Xu, et autres
Publié: (2021) -
Task-Adaptive Embedding Learning with Dynamic Kernel Fusion for Few-Shot Remote Sensing Scene Classification
par: Pei Zhang, et autres
Publié: (2021) -
Meta-Seg: A Generalized Meta-Learning Framework for Multi-Class Few-Shot Semantic Segmentation
par: Zhiying Cao, et autres
Publié: (2019)