Optimizing Few-Shot Learning Based on Variational Autoencoders

Despite the importance of few-shot learning, the lack of labeled training data in the real world makes it extremely challenging for existing machine learning methods because this limited dataset does not well represent the data variance. In this research, we suggest employing a generative approach u...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ruoqi Wei, Ausif Mahmood
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/df412ec1c61f467f80127d304633eb2e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!