Optimizing Few-Shot Learning Based on Variational Autoencoders
Despite the importance of few-shot learning, the lack of labeled training data in the real world makes it extremely challenging for existing machine learning methods because this limited dataset does not well represent the data variance. In this research, we suggest employing a generative approach u...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/df412ec1c61f467f80127d304633eb2e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sea el primero en dejar un comentario!