Predicting Pt-195 NMR Chemical Shift and <sup>1</sup>J(<sup>195</sup>Pt-<sup>31</sup>P) Coupling Constant for Pt(0) Complexes Using the NMR-DKH Basis Sets
Pt(0) complexes have been widely used as catalysts for important reactions, such as the hydrosilylation of olefins. In this context, nuclear magnetic resonance (NMR) spectroscopy plays an important role in characterising of new structures and elucidating reaction mechanisms. In particular, the Pt-19...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/df439ef04f8f4324811360b6522c9bba |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:df439ef04f8f4324811360b6522c9bba |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:df439ef04f8f4324811360b6522c9bba2021-11-25T18:12:32ZPredicting Pt-195 NMR Chemical Shift and <sup>1</sup>J(<sup>195</sup>Pt-<sup>31</sup>P) Coupling Constant for Pt(0) Complexes Using the NMR-DKH Basis Sets10.3390/magnetochemistry71101482312-7481https://doaj.org/article/df439ef04f8f4324811360b6522c9bba2021-11-01T00:00:00Zhttps://www.mdpi.com/2312-7481/7/11/148https://doaj.org/toc/2312-7481Pt(0) complexes have been widely used as catalysts for important reactions, such as the hydrosilylation of olefins. In this context, nuclear magnetic resonance (NMR) spectroscopy plays an important role in characterising of new structures and elucidating reaction mechanisms. In particular, the Pt-195 NMR is fundamental, as it is very sensitive to the ligand type and the oxidation state of the metal. In the present study, quantum mechanics computational schemes are proposed for the theoretical prediction of the Pt-195 NMR chemical shift and <sup>1</sup>J(<sup>195</sup>Pt–<sup>31</sup>P) in Pt(0) complexes. The protocols were constructed using the B3LYP/LANL2DZ/def2-SVP/IEF-PCM(UFF) level for geometry optimization and the GIAO-PBE/NMR-DKH/IEF-PCM(UFF) level for NMR calculation. The NMR fundamental quantities were then scaled by empirical procedures using linear correlations. For a set of 30 Pt(0) complexes, the results showed a mean absolute deviation (MAD) and mean relative deviation (MRD) of only 107 ppm and 2.3%, respectively, for the Pt-195 NMR chemical shift. When the coupling constant is taken into account, the MAD and MRD for a set of 33 coupling constants in 26 Pt(0) complexes were of 127 Hz and 3.3%, respectively. In addition, the models were validated for a group of 17 Pt(0) complexes not included in the original group that had MAD/MRD of 92 ppm/1.7% for the Pt-195 NMR chemical shift and 146 Hz/3.6% for the <sup>1</sup>J(<sup>195</sup>Pt–<sup>31</sup>P).Joyce H. C. e SilvaHélio F. Dos SantosDiego F. S. PaschoalMDPI AGarticlePt(0) complexescatalysisNMRPt-195 chemical shiftbasis setDFTChemistryQD1-999ENMagnetochemistry, Vol 7, Iss 148, p 148 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Pt(0) complexes catalysis NMR Pt-195 chemical shift basis set DFT Chemistry QD1-999 |
spellingShingle |
Pt(0) complexes catalysis NMR Pt-195 chemical shift basis set DFT Chemistry QD1-999 Joyce H. C. e Silva Hélio F. Dos Santos Diego F. S. Paschoal Predicting Pt-195 NMR Chemical Shift and <sup>1</sup>J(<sup>195</sup>Pt-<sup>31</sup>P) Coupling Constant for Pt(0) Complexes Using the NMR-DKH Basis Sets |
description |
Pt(0) complexes have been widely used as catalysts for important reactions, such as the hydrosilylation of olefins. In this context, nuclear magnetic resonance (NMR) spectroscopy plays an important role in characterising of new structures and elucidating reaction mechanisms. In particular, the Pt-195 NMR is fundamental, as it is very sensitive to the ligand type and the oxidation state of the metal. In the present study, quantum mechanics computational schemes are proposed for the theoretical prediction of the Pt-195 NMR chemical shift and <sup>1</sup>J(<sup>195</sup>Pt–<sup>31</sup>P) in Pt(0) complexes. The protocols were constructed using the B3LYP/LANL2DZ/def2-SVP/IEF-PCM(UFF) level for geometry optimization and the GIAO-PBE/NMR-DKH/IEF-PCM(UFF) level for NMR calculation. The NMR fundamental quantities were then scaled by empirical procedures using linear correlations. For a set of 30 Pt(0) complexes, the results showed a mean absolute deviation (MAD) and mean relative deviation (MRD) of only 107 ppm and 2.3%, respectively, for the Pt-195 NMR chemical shift. When the coupling constant is taken into account, the MAD and MRD for a set of 33 coupling constants in 26 Pt(0) complexes were of 127 Hz and 3.3%, respectively. In addition, the models were validated for a group of 17 Pt(0) complexes not included in the original group that had MAD/MRD of 92 ppm/1.7% for the Pt-195 NMR chemical shift and 146 Hz/3.6% for the <sup>1</sup>J(<sup>195</sup>Pt–<sup>31</sup>P). |
format |
article |
author |
Joyce H. C. e Silva Hélio F. Dos Santos Diego F. S. Paschoal |
author_facet |
Joyce H. C. e Silva Hélio F. Dos Santos Diego F. S. Paschoal |
author_sort |
Joyce H. C. e Silva |
title |
Predicting Pt-195 NMR Chemical Shift and <sup>1</sup>J(<sup>195</sup>Pt-<sup>31</sup>P) Coupling Constant for Pt(0) Complexes Using the NMR-DKH Basis Sets |
title_short |
Predicting Pt-195 NMR Chemical Shift and <sup>1</sup>J(<sup>195</sup>Pt-<sup>31</sup>P) Coupling Constant for Pt(0) Complexes Using the NMR-DKH Basis Sets |
title_full |
Predicting Pt-195 NMR Chemical Shift and <sup>1</sup>J(<sup>195</sup>Pt-<sup>31</sup>P) Coupling Constant for Pt(0) Complexes Using the NMR-DKH Basis Sets |
title_fullStr |
Predicting Pt-195 NMR Chemical Shift and <sup>1</sup>J(<sup>195</sup>Pt-<sup>31</sup>P) Coupling Constant for Pt(0) Complexes Using the NMR-DKH Basis Sets |
title_full_unstemmed |
Predicting Pt-195 NMR Chemical Shift and <sup>1</sup>J(<sup>195</sup>Pt-<sup>31</sup>P) Coupling Constant for Pt(0) Complexes Using the NMR-DKH Basis Sets |
title_sort |
predicting pt-195 nmr chemical shift and <sup>1</sup>j(<sup>195</sup>pt-<sup>31</sup>p) coupling constant for pt(0) complexes using the nmr-dkh basis sets |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/df439ef04f8f4324811360b6522c9bba |
work_keys_str_mv |
AT joycehcesilva predictingpt195nmrchemicalshiftandsup1supjsup195supptsup31suppcouplingconstantforpt0complexesusingthenmrdkhbasissets AT heliofdossantos predictingpt195nmrchemicalshiftandsup1supjsup195supptsup31suppcouplingconstantforpt0complexesusingthenmrdkhbasissets AT diegofspaschoal predictingpt195nmrchemicalshiftandsup1supjsup195supptsup31suppcouplingconstantforpt0complexesusingthenmrdkhbasissets |
_version_ |
1718411530069868544 |