Variational quantum algorithm with information sharing

Abstract We introduce an optimisation method for variational quantum algorithms and experimentally demonstrate a 100-fold improvement in efficiency compared to naive implementations. The effectiveness of our approach is shown by obtaining multi-dimensional energy surfaces for small molecules and a s...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Chris N. Self, Kiran E. Khosla, Alistair W. R. Smith, Frédéric Sauvage, Peter D. Haynes, Johannes Knolle, Florian Mintert, M. S. Kim
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/df508c9fc03941c3b4af813f7440ce5c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:df508c9fc03941c3b4af813f7440ce5c
record_format dspace
spelling oai:doaj.org-article:df508c9fc03941c3b4af813f7440ce5c2021-12-02T16:17:27ZVariational quantum algorithm with information sharing10.1038/s41534-021-00452-92056-6387https://doaj.org/article/df508c9fc03941c3b4af813f7440ce5c2021-07-01T00:00:00Zhttps://doi.org/10.1038/s41534-021-00452-9https://doaj.org/toc/2056-6387Abstract We introduce an optimisation method for variational quantum algorithms and experimentally demonstrate a 100-fold improvement in efficiency compared to naive implementations. The effectiveness of our approach is shown by obtaining multi-dimensional energy surfaces for small molecules and a spin model. Our method solves related variational problems in parallel by exploiting the global nature of Bayesian optimisation and sharing information between different optimisers. Parallelisation makes our method ideally suited to the next generation of variational problems with many physical degrees of freedom. This addresses a key challenge in scaling-up quantum algorithms towards demonstrating quantum advantage for problems of real-world interest.Chris N. SelfKiran E. KhoslaAlistair W. R. SmithFrédéric SauvagePeter D. HaynesJohannes KnolleFlorian MintertM. S. KimNature PortfolioarticlePhysicsQC1-999Electronic computers. Computer scienceQA75.5-76.95ENnpj Quantum Information, Vol 7, Iss 1, Pp 1-7 (2021)
institution DOAJ
collection DOAJ
language EN
topic Physics
QC1-999
Electronic computers. Computer science
QA75.5-76.95
spellingShingle Physics
QC1-999
Electronic computers. Computer science
QA75.5-76.95
Chris N. Self
Kiran E. Khosla
Alistair W. R. Smith
Frédéric Sauvage
Peter D. Haynes
Johannes Knolle
Florian Mintert
M. S. Kim
Variational quantum algorithm with information sharing
description Abstract We introduce an optimisation method for variational quantum algorithms and experimentally demonstrate a 100-fold improvement in efficiency compared to naive implementations. The effectiveness of our approach is shown by obtaining multi-dimensional energy surfaces for small molecules and a spin model. Our method solves related variational problems in parallel by exploiting the global nature of Bayesian optimisation and sharing information between different optimisers. Parallelisation makes our method ideally suited to the next generation of variational problems with many physical degrees of freedom. This addresses a key challenge in scaling-up quantum algorithms towards demonstrating quantum advantage for problems of real-world interest.
format article
author Chris N. Self
Kiran E. Khosla
Alistair W. R. Smith
Frédéric Sauvage
Peter D. Haynes
Johannes Knolle
Florian Mintert
M. S. Kim
author_facet Chris N. Self
Kiran E. Khosla
Alistair W. R. Smith
Frédéric Sauvage
Peter D. Haynes
Johannes Knolle
Florian Mintert
M. S. Kim
author_sort Chris N. Self
title Variational quantum algorithm with information sharing
title_short Variational quantum algorithm with information sharing
title_full Variational quantum algorithm with information sharing
title_fullStr Variational quantum algorithm with information sharing
title_full_unstemmed Variational quantum algorithm with information sharing
title_sort variational quantum algorithm with information sharing
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/df508c9fc03941c3b4af813f7440ce5c
work_keys_str_mv AT chrisnself variationalquantumalgorithmwithinformationsharing
AT kiranekhosla variationalquantumalgorithmwithinformationsharing
AT alistairwrsmith variationalquantumalgorithmwithinformationsharing
AT fredericsauvage variationalquantumalgorithmwithinformationsharing
AT peterdhaynes variationalquantumalgorithmwithinformationsharing
AT johannesknolle variationalquantumalgorithmwithinformationsharing
AT florianmintert variationalquantumalgorithmwithinformationsharing
AT mskim variationalquantumalgorithmwithinformationsharing
_version_ 1718384262646857728